Anmeldung eines Themas für ein/e

Forschungsseminar	Χ	
Methodenseminar	X	
Masterarbeit	X	(bitte eines oder mehrere ankreuzen)

topic	Sublimational fragmentation of rimed ice particles – a	
date	laboratory study to quantify ice multiplication	
	29.09.2023	
Betreuer	Prof Dr. Manfred Wendisch	
(mit	Leipziger Institut für Meteorologie. Universität Leipzig	
Kontaktdaten)	Stephanstr. 3. 04103 Leipzig	
	Tel.: 0341 97 32851	
	E-Mail: m.wendisch@uni-leipzig.de	
Zweitgutachter	Dr. Susan Hartmann	
	TROPOS, Permoserstr. 15, 04318 Leipzig	
	hartmann@tropos.de	
Kurzbeschreibung:	In mixed phase clouds ice multiplication leads to up to four	
	orders of magnitude higher ice particle number concentrations	
	compared to those of ice nucleating particles [4]. Different	
	Secondary Ice Production (SIP) mechanisms have been described	
	which potentially lead to higher ice crystal number	
	concentrations [5]. One of these proposed and controversy-	
	discussed SIP mechanism is the sublimational fragmentation of	
	large ice particles under subsaturated conditions with respect to	
	ice [2, 5] Only a very few experiments exist on which the state-	
	of the art parameterizations are based [1-3, 6]. To study the	
	of-the-art parameterizations are based [1-5, 0]. To study the	
	potential relevance of subimational magnetication of nined ice	
	particles, the number and size of secondarily produced ice	
	particles need to be determined. In the course of a literature	
	review, the fundamental principles of fragmentation of ice	
	particles due to sublimation are worked out, its potential	
	relevance is discussed. The main part includes carrying out	
	experiments using an existing experimental set-up and the	
T •	Interpretation of results in context of atmospheric relevance.	
Literatur:	Atmospheres, DOI: 10.1029/98jd01162.	
	2. Deshmukh, A., et al., <i>New Empirical Formulation for the Sublimational Breakup of Graupel</i> and Dendritic Snow, 2022. Journal of the Atmospheric Sciences, DOI:	
	https://doi.org/10.1175/JAS-D-20-0275.1.	
	<i>Atmospheric Research</i> , DOI: 10.1016/0169-8095(94)90050-7.	
	4. Field, P.R., et al., Chapter 7: Secondary ice production: Current state of the science and recommendations for the future, in Ice formation and evolution in clouds and precipitation :	
	Measurement and modeling challenges. 2017, AMS. p. 7.1-7.20 (Online: 6 April 2017).	
	<i>Atmospheric Chemistry and Physics</i> , DOI: 10.5194/acp-20-11767-2020.	
	6. Oraltay, R.G. and J. Hallett, <i>Evaporation and Melting of Ice Crystals: A Laboratory Study</i> , 1989, <i>Atmospheric Research</i> , DOI: 10.1016/0169-8095(89)90044-6	