Announcement of a topic for:

Seminar Research		
Seminar Methods		
Master Theses	X	(please mark one or more)

Торіс	Unraveling the Complexity of Black Carbon: Heterogeneities and Mixing State
Release Date	21 August 2023
Supervisor	Prof. Dr. Mira Pöhlker
(contact)	Leibniz-Institut für Troposphärenforschung (TROPOS)
	Permoserstraße 15, 04318 Leipzig
	Telephone: +49 341 2717-7431
	E-Mail: mira.poehlker@tropos.de
Additional Contact	Dr. Arun Babu Suja
	Leibniz-Institut für Troposphärenforschung (TROPOS)
	Permoserstraße 15, 04318 Leipzig
	Telephone: +49 341 2717-7066
	Email: arun.babu@tropos.de
Second Reviewer	
Description:	Black carbon (BC), a ubiquitous component of atmospheric aerosols resulting from
	incomplete combustion, is an intricate and important contributor in climate change.
	BC particles can vary widely due to differences in their emission sources, atmospheric aging, and transport processes. BC can interact with other aerosols
	during its formation and transport, leading to complex particle mixtures. This
	influences its optical properties, atmospheric lifetime, and impact on climate.
	Moreover, the heterogeneity of BC, encompassing variations in size and shape,
	further adds to its multifaceted behavior in the atmosphere.
	This study places a central emphasis on two critical aspects: the heterogeneity of BC particles and their mixing state. The research goal of the proposed master's thesis is
	to understand the characteristic patterns observed between the particle size
	distributions and BC mass concentration correlations (BC- size correlation
	spectrums), to provide a novel BC related approach for aerosol classification. The
	study will utilize the in-situ observations of BC mass concentrations and particle size
	distribution measurements from several field stations across the globe and also
	validated with Single particle soot photometer measurements from selected TROPOS research stations. In addition to this, the study will also investigate how
	BC's mixing state, heterogeneity, and volatility influence its atmospheric behavior
	and interactions.
Literature:	1. Romshoo, B., Müller, T., Pfeifer, S., Saturno, J., Nowak, A., Ciupek, K., Quincey, P. and Wiedensohler, A.: Optical properties of coated black carbon aggregates: Numerical simulations, radiative forcing
	estimates, and size-resolved parameterization scheme, Atmospheric Chemistry and Physics, 21(17),
	12989-13010, 2021.
	2. Romshoo, B., Pöhlker, M., Wiedensohler, A., Pfeifer, S., Saturno, J., Nowak, A., Ciupek, K., Quincey, P., Vasilatou, K., Ess, M. N., Gini, M., Eleftheriadis, K., Robins, C., Gaie-Levrel, F., and Müller, T.:
	Importance of size representation and morphology in modelling optical properties of black carbon:
	comparison between laboratory measurements and model simulations, Atmos. Meas. Tech., 15, 6965–
	6989, 2022. 3. Chenjie Yu, Dantong Liu, Kurtis Broda, Rutambhara Joshi, Jason Olfert, Yele Sun, Pingqing Fu, Hugh
	Coe, and James D. Allan, Characterising mass-resolved mixing state of black carbon in Beijing using a
	morphology-independent measurement method, Atmos. Chem. Phys., 20, 3645–3661, 2020.
	4. Sun, C., Adachi, K., Misawa, K., Cheung, H. C., Chou, C. CK., Takegawa, N, Mixing state of black carbon particles in Asian outflow observed at a remote site in Taiwan in the spring of 2017. Journal of
	Geophysical Research: Atmospheres, 125, e2020JD032526. 2020.