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Chapter 1

Motivation

Nuclear magnetic resonance (NMR) is a technique used in a wide range of disciplines such as medicine,
explicitly MRI (magnetic resonance image) which is a non-invasive technique to observe anomalies in body
tissues in order to detect pathologies. In biology and chemistry, the NMR technique is fundamental to determine
the structure and functions of biological components and to perform chemical analysis in a broad range of
substances.

This revolutionary technique was discovered in 1946 simultaneously by Edward Purcell at Harvard university
and Felix Bloch at Stanford. Bloch’s approach was in terms of dynamic macroscopic voltage signals induced
by precession and the Faraday effect, whereas the Purcell group description was in optical terms of quantum
mechanical susceptibility and absorption [1]. Both were awarded with the Nobel Prize in physics in 1952.

Principally, NMR measures the magnetic field originated by the Larmor precession of nuclear spins in the
presence of an external magnetic field which induces the magnetization of the sample, this magnetization is
the NMR signal,also called polarization, is proportional to the population difference between the states.

The action of increasing the polarization beyond thermal equilibrium is called nuclear Hyperpolarization, this
can be attained through different mechanisms such as dynamic Hyperpolarization which can involve very high
magnetic fields, cryogenic techniques and microwave fields , unfortunately these techniques can be expensive
since they require special sets of equipment.

A relatively new approach to attain Hyperpolarization had became a promising technique which is possible
to operate at room temperature. This method exploits one of the most important features of the negatively
charged nitrogen vacancy centers (NV−), which is the optical initialization through the irradiation of green
laser light that enables the dynamic nuclear polarization techniques which can transfer the polarization of the
(NV−) centers to the 13C nuclei.

In this work, we present a study of two Hyperpolarization techniques in a three spin system composed by two
electron spins of NV−, P1 and 13C nuclear spin in the presence of external magnetic fields. These techniques
are the Cross polarization technique and a technique based on inducing states transitions by employing time
dependent magnetic fields which can be rationalized in terms of the Landau-Zener theory.
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Chapter 2

Theory background

2.1 Diamond properties
The famous diamond is one of the allotrope forms of carbon, The diamond lattice is what is known as a face
centered cubic crystal structure with a basis of two carbon atoms at each lattice point: one at (0,0,0) and the
other at (1/4,1/4,1/4), where the coordinates are fractions along the cube sides, the diamond cubic cell belongs
to the space group 226 or Fdbar3m [2]

Figure 2.1: Diamond unit cell [3]

The diamond cubic unit cell is composed by eight carbon atoms and each carbon atom is bonded via covalent
bonds to the nearest four atoms (tetrahedrally coordinated) , the strength of the covalent bonds is what makes
the diamond cubic order distinctly rigid and therefore the reason of its high hardness.

The hardness of diamond, between numerous properties of this material, has made it outstanding for a wide
variety of applications in industry. Indeed, natural diamond is used as the maximum for the calibration of
the Mohs (scratch-) hardness scale, on which it is assigned a value of 10 [2].Another notorious property is
its thermal conductivity of 2300 W/m.K at room temperature (300 K), this value is four times the thermal
conductivity of Copper. The diamond’s thermal conductivity high value had been exploited by more than
one industry, for example the gem and jewelry sector made use of this diamond property to create devices to
differentiate between real and imitation diamonds.
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The diamond thermal conductivity value in addition to its resistivity values from 1011 to 1018 Ω − m made it
a promising material for electronic applications . In 2004 the discovery of superconductivity in boron-doped
diamond synthesized at high pressure and high temperature were reported in [4].

The chemical inertness of diamond had a major impact in chemistry and biology, specifically the use of
diamond films had led to the development of applications such as the development of biosensor, medical
implants, electronic devices based on organic matter, etc.

Another property that makes diamond an attractive material is its transparency over a wide range of radiation
wavelengths, this property has been exploited to produce windows and lenses for a broad variety of optical
devices [5]

2.1.1 Artificial diamonds manufacture techniques
Due to the demand existing in industry and commerce for diamonds, two main techniques had been developed
to achieve this goal will be described shortly in this subsection. High pressure high temperature (HPHT)
synthesis operates as it name indicates to emulate the process through which natural diamonds are created.
This technique proved its efficiency in 1955 when Bundy employed pressure vessel working up to 10 GPa
under temperatures higher than 2000 °C [6]. Under such conditions, diamond is the thermodynamically stable
allotrope of carbon, and therefore the phase transition of graphite to diamond is enabled.The diamond type
Ib is the most common type produced with this technique, with longer and controlled growth periods the
production of type Ib single crystals are also possible. The HPHT method is the favorite in industry because
of its low production cost .The main disadvantage of this technique is its inability to produce diamonds with
low impurities concentration (nitrogen) [7]. In contrast to the HPHT technique, the chemical vapor deposition
(CVD) technique can produce high purity diamonds. This technique consists in growing diamond from a
hydrocarbon gas mixture. The main steps of this process in diamond consists in placing the material inside a
vacuum chamber and heat it to a temperature around 800 °C and low pressure (1 to 27 kPa) until it vaporizes,
then the chamber is filled with gases rich in carbon such as methane, the last will react with the substrate and
the new material will settle, if impurities are going to be added there are added in adequate moments during
the process. [8]

2.1.2 Classification of diamond
Even though diamond structure is remarkably rigid, it always has certain types of impurities which can include
also other crystallographic defects (e.g vacancies, interstitial carbons), the classification of natural and synthetic
diamonds is based on the presence and absence of nitrogen and how these nitrogen atoms are arranged. The
types are divided in the following manner [9]:

• Type I: The dominant impurity is nitrogen, it absorbs in infrarred and ultraviolet region.

⋄ Type Ia : Contains aggregates of substitutional nitrogen up to 3000 ppm

∗ Type IaA : The substitutional nitrogen atoms are mostly located in the closest neighbor positions,
forming pairs of nitrogen. Usually, it presents any fluorescence.

∗ Type IaB : The nitrogen atoms are mostly located forming groups of four substitutional nitrogen
atoms around a vacancy. Blue fluorescence is normally present

⋄ Type Ib : The nitrogen impurities replace carbon atoms in the lattice (substitutional nitrogen) in an
isolated manner, the nitrogen lead to a yellow colour fluorescence, the nitrogen concentration can
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reach a maximum value of ≈ 500 ppm.

• Type II: Amount of nitrogen impurities is undetectable

⋄ Type IIa : Its thermal conductivity is the highest and does not contain easily measurable nitrogen
impurities as a consequence are colorless.

⋄ Type IIb : This diamond type is also a p-type semiconductor due to the dominance of substitutional
boron over the nitrogen impurities, this causes the diamond to exhibit a light blue color, it can also
be colorless if concentration of boron is low.

2.1.3 Crystallographic defects in diamond
The crystallographic defects consist of substitutes of carbon, interstitial carbons and absent atoms also known
as vacancies.

Both, artificial and natural diamonds usually contain defects. In the case of natural diamonds the substitutional
defects can basically be nitrogen and boron. The defects can give color to the diamond even when present in
very small quantities (in order of few ppm). The presence of boron gives diamond a blue color, the NV center
can colour the diamond with a pink or purple color. In the case of Type Ib diamond, this is yellow colored due
to the presence of single substitutional nitrogen also known as P1 centers.

P1 centers
As seen in section 2.1.2, the most abundant defect in Type Ib diamond is nitrogen. The P1 center is a neutral
charged nitrogen atom formed by the displacement of a carbon in the diamond lattice. In addition,it has four
possible orientations due to the Jahn-Teller distortion from 𝑇𝑑 to C3v symmetry [10] . The Hamiltonian of the
P1 center in the presence of a magnetic field 𝐵̄ oriented in Z direction can be described as follows:

𝐻𝑃1 = 𝛾𝑃1𝐵̄.𝑆
𝑃1 + 𝑆𝑃1 ¯̄𝐴𝐼14𝑁 (2.1)

In the Hamiltonian , the terms 𝑆𝑃1 and 𝐼14𝑁 represent respectively the the P1 center (S=1/2) electron spin
vector operator and the nuclear spin vector operator of its intrinsic isotope 14N (I=1), this last is present in the
Hamiltonian because of its natural abundance of 99.634% in contrast to the 15N with an abundance of 0.366%
.
The term ¯̄𝐴 is the anisotropic Hyperfine interaction tensor between the electron spin 𝑆𝑃1 and the nuclear spin
𝐼14𝑁 . This tensor is composed by an axial component A∥= 114 MHz and a transverse component 𝐴⊥ = 81
MHz [11]

𝐴𝑂 =
©­«
81 0 0
0 81 0
0 0 114

ª®¬ (2.2)

The gyromagnetic ratio 𝛾P1 can be taken in first approximation as the gyromagnetic ratio of the electron
𝛾 = 28 03 MHz/mT.
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2.2 NV center in Diamond
The NV center is a defect in the diamond lattice made up of a substitutional nitrogen atom and a first-neighbor
vacancy in the lattice both situated along their symmetry axis [12] [13]. The defect has 𝐶3𝑣 symmetry which
means that it can be rotated into three equivalent rotations 120◦ and 𝑣 refers to vertical symmetry plane. In the
diamond, each carbon atom has four first neighbors that implies four different crystallographic axes ( [111],
[1̄1̄1], [1̄11̄] and [11̄1̄]) along which the NV center can be oriented, nonetheless the distinction between these
orientations do not play any role in the spin properties of the NV center nor in their optical properties [14].

Figure 2.2: NV center in the diamond, the carbon atoms are depicted as blue spheres [15]

Figure 2.3: Four diamond orientations for the NV center [16]

2.2.1 NV− electronic structure
The NV− electronic structure is built from three carbon unpaired electrons (dangling bond electrons), which
surround the vacancy, that contributes three valence electrons in total and the nitrogen atom that contributes
with two electrons from their five valence electrons. In addition, an extra electron from neighbor donors gives
a total of six valence electrons composes the NV−. Regarding its electron spin, its value is S = 1 [14].
The dynamic nuclear polarization methods presented in this master thesis depend on the remarkable properties
of the negatively charged nitrogen-vacancy NV− center. Therefore, from this point, when mentioned NV
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center I refer to the NV− center.
A description of the electronic structure of the NV center in the ground and excited states had been elaborated
using Ab initio calculations and group theory. The electrons occupy four molecular orbitals with C3v symmetry
(u,v,ex,ey). These were constructed as orthonormal real linear combinations of the carbon atomic orbitals
denoted as (a,b,c) and the nitrogen orbital denoted as d. The Hund’s rule and Pauli exclusion principle are
considered to fill up the ground state, the orbitals u,u and v,v are fully occupied and the ex,ey are each one
occupied by an electron [13]. In the first excited state case, as shown the figure 2.5, the transition of an electron
from v to one of the spins down orbitals ex or ey 2.4, the symmetry changes to 𝐶1ℎ due to the Jahn-Teller effect
which involves the coupling between degenerate electronic states to degenerate phonon modes [17].

Schematic illustration of spin configurations for different charge states of NV center. Orange dotted horizontal
line shows the relative position of the Fermi level EF .

u,u
Valence band

Conduction band

ex ey

eyex

v
v

Figure 2.4: NV− center ground state spin
configuration

u,u
Valence band

Conduction band

ex ey

eyex

v
v

Figure 2.5: NV− center excited state spin
configuration

NV− Optical properties and dynamics
The theoretical description already mentioned in addition to the experimental results led to the energy diagram
2.6

The ground state is a spin triplet with orbital symmetry 3𝐴2, the excited state is also a spin triplet but with 3𝐸
orbital symmetry. In the ground state, spin-spin dipolar interaction takes place between the unpaired electrons
2.4 causing the zero field splitting (ZFS) of value Dgs=2870 MHz between 𝑚𝑠 = 0 and 𝑚𝑠 = ±1. Similarly
occurs in the excited state leading to a ZFS and a value of Des=1420 MHz 2.5 [14]
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Figure 2.6: NV− energy levels diagram : Here, 𝑚𝑠 denotes the electron spin-projection quantum number.
The relaxation rates from the singlet state 1𝐸 to the triplet ground state 3𝐴2 are represented by 𝛾𝑔0 and 𝛾𝑔±1,

while 𝛾𝑒0 and 𝛾𝑒±1 are the correspondent from the triplet excited state 3𝐸 to the singlet state 1𝐴1
[8][18]

Under laser illumination the optical properties and spin dynamics of the NV− center are revealed. The green
laser irradiates the NV− center driving the ground state to the excited state. Radiative transition decay path
to the ground state triplet 3𝐴2 from the excited state 3𝐸 is characterized by the emission of a photon in the
red visible spectrum region, also it is spin conserving . Conversely, the decay path via the metastable singlet
states 1𝐴 and 1𝐸 also known as inter system crossing (ISC) is spin non-conserving. For the 𝑚𝑠 = ±1 excited
states the probability to go through ISC is significantly higher than for the 𝑚𝑠 = 0 excited state, the relaxation
rates depicted in orange color indicate this fact. As well the probability of decaying from the intermediate
metastable states to the ground state 𝑚𝑠 = 0 is also favored. Therefore, after a few optical excitation emission
cycles a strong spin polarization of the ground state 𝑚𝑠 = 0 spin sublevel is established [19]

The feature that makes possible the NV− optical initialization (optical polarization) is that no matter which is
the initial state the probability of the NV− to decay to the 𝑚𝑠 = 0 is favored, the transition rates are indicators of
this feature. On the other hand, For the 𝑚𝑠 = ±1 excited states the probability to go through ISC is significantly
higher than for the 𝑚𝑠 = 0 excited state, this dominance of the ISC path makes the optical readout possible.
This has been experimentally observed in photoluminescence experiments [20], as already mentioned the decay
path between the ground and excited states is radiative in the visible region spectrum, conversely the ISC paths
are non-radiative, therefore the 𝑚𝑠 = ±1 states are called dark states and 𝑚𝑠 = 0 are called bright states,
therefore, this last present a higher average fluorescence intensity [21]. In the figure 2.7 𝑛0 and 𝑛−1 show the
accumulated number of response photons per ns for the systems with initial 𝑚𝑁𝑉

𝑠 = 0 state and 𝑚𝑁𝑉
𝑠 = −1

respectively, the difference is what distinguish the states between each other.
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Figure 2.7: Optical readout of NV− Fluorescence response. Obtained from [21]

2.3 Zeeman effect
In essence, the Zeeman effect can be described as a phenomena that electrons and nuclei undergo in the
presence of a magnetic field. These particles possess a dipole moment associated with their angular momentum,
therefore,in the presence of a magnetic field, they acquire additional energy which leads to a positive or negative
shift in their original energy levels. In the case of degenerate energy levels in an atom, the Zeeman effect cause
the split into more than one levels with different energy values.
The normal Zeeman effect is the name of the Zeeman effect that occurs for transitions between singlet states
in which the spin is zero and the total angular momentum 𝐽 is equal to the orbital angular momentum 𝐿̄,
conversely, the more general case, when 𝑆 ≠ 0, is called Anomalous Zeeman effect.

2.3.1 Normal Zeeman effect
To treat the simplest case of the Zeeman effect it is appropriate to introduce the Hamiltonian of a particle with
𝑆 = 0 in the presence of an homogeneous magnetic field 𝐵 [22]

𝐻𝑍 =
1

2𝑚
(𝑃̄ − 𝑞

𝑐
𝐴)2 + 𝑞𝜙 (2.3)

Where 𝐴 is the vector potential and 𝜙 the scalar potential of the electric field, 𝑚𝑒 is the mass of the particle and
𝑞 is its charge.
In order to simplify 2.3, the second term can be expanded as following:

1
2𝑚

(𝑃̄ − 𝑞

𝑐
𝐴)2 =

1
2𝑚

[
𝑃̄2 − 𝑞

𝑐
𝑃̄.𝐴̄ − 𝑞

𝑐
𝐴̄.𝑃̄ + 𝑞

2

𝑐2 𝐴̄
2
]

(2.4)

On the right hand, the third term is 𝑞2

2𝑚𝑐2 𝐴̄
2 is not significant for atoms where ⟨𝐿𝑧⟩ ≠ 0. For that reason, the

only term that leads to the Zeeman Hamiltonian term (𝐻𝑍 ) is − 𝑞

𝑐
𝑃̄. 𝐴̄ − 𝑞

𝑐
𝐴̄.𝑃̄.
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In order to obtain the Zeeman Hamiltonian part of 2.3, the relation between the vector potential A and magnetic
field B will be applied.

𝐴𝑖 (𝑥) = −1
2
𝜀𝑖 𝑗 𝑘𝑥 𝑗𝐵𝑘 (2.5)

𝑃̄. 𝐴̄ = −1
2
𝑃̄.(𝑥 × 𝐵̄)

= −1
2
𝐵̄.(𝑃̄ × 𝑥)

𝑃̄. 𝐴̄ =
1
2
𝐿̄.𝐵̄

(2.6)

Where 𝐿̂ is the angular momentum of the particle, as well, the term A.𝑃̂ leads to the 𝐻𝑍

𝑞

2𝑚𝑐
(𝑃̄. 𝐴̄ + 𝐴̄.𝑃̄) = 𝜇𝐵

ℏ
𝐿̄.𝐵̄ (2.7)

𝐻𝑍 =
𝜇𝐵

ℏ
𝐿̄.𝐵̄ (2.8)

In 2.8, the constant 𝜇B=5.788381 eV/T is the Bohr magneton.

In this regard, we can define the magnetic moment 𝜇 as :

𝜇̄ =
𝜇𝐵

ℏ
𝐿̄ (2.9)

2.3.2 Anomalous Zeeman effect
In this more general case we have the total angular momentum [23]:

𝐽 = 𝐿̄ + 𝑆 (2.10)

Where the total magnetic moment 𝜇 is represented as:

𝜇̄ = −𝜇𝐵
ℏ
( 𝐿̄ + 𝑔𝑆) (2.11)

In the last expression 𝑔 is the Landé factor for the electron 𝑔 ≈ 2. With this new expression of the magnetic
moment 𝜇

𝐻𝑍 = −𝜇𝐵
ℏ
( 𝐿̄ + 𝑔𝑆).𝐵̄ (2.12)

The energies associated with the Zeeman Hamiltonian 𝐻𝑍 are determined by the eigenvalues 𝑚𝑖 of L + 𝑔S.
This is the splitting of the energy levels that characterize the Zeeman effect.
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2.4 Dipole-Dipole magnetic interaction

In the presence of an external magnetic field 𝐵̄, the interaction between two particles is induced by their
local interaction with the field [24]. In the classical description, the interaction energy between two particles
separated by a vector of distance r̂ the magnetic moments 𝜇1 and 𝜇2 is given by

𝐸 =
𝜇0

4𝜋𝑟3 ( ®𝜇1 · ®𝜇2 − 3( ®𝜇1 · r̂) ( ®𝜇2 · r̂)) (2.13)

For a quantum mechanics interpretation, the Hamiltonian can be expressed when the magnetic moments are
written in terms of their operators [25]

𝜇̄1 = 𝛾1ℏ𝐼1 𝜇̄2 = 𝛾2ℏ𝐼2 (2.14)

Which leads to:

𝐻𝑑𝑑 =
𝜇0𝛾1𝛾2ℏ2

4𝜋𝑟3 (𝐼1.𝐼2 − 3(𝐼1.r̂) (𝐼2.r̂)) (2.15)

The Hamiltonian can expressed in terms of the spin operators components, ladder operators 𝐼+1 ,𝐼−1 ,𝐼+2 ,𝐼−2 and
the polar coordinates (r, 𝜃, 𝜙) of the particles relative positions.
The ladder operators are given by:

𝐼+ = 𝐼𝑥 + 𝑖𝐼𝑦 𝐼− = 𝐼𝑥 − 𝑖𝐼𝑦 (2.16)

θ

ϕ

x

y

z

r

1

2

Figure 2.8: Relative position r of two particles
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𝐻𝑑𝑑 =
𝜇0𝛾1𝛾2ℏ2

4𝜋𝑟3 (𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹) (2.17)

𝐴 = 𝐼1𝑧 𝐼2𝑧 (1 − 3 cos2 𝜃)

𝐵 = −1
4
(𝐼+1 𝐼

−
2 − 𝐼−1 𝐼

+
2 ) (1 − 3 cos2 𝜃)

𝐶 = −3
2
(𝐼+1 𝐼2𝑧 − 𝐼1𝑧 𝐼

+
2 ) sin 𝜃 cos 𝜃 exp{−𝑖𝜙}

𝐷 = −3
2
(𝐼−1 𝐼2𝑧 − 𝐼1𝑧 𝐼

−
2 ) sin 𝜃 cos 𝜃 exp{𝑖𝜙}

𝐸 = −3
4
𝐼+1 𝐼

+
2 sin2 𝜃 exp{−2𝑖𝜙}

𝐹 = −3
4
𝐼−1 𝐼

−
2 sin2 𝜃 exp{2𝑖𝜙}

Each term has certain effect, to describe what effect each term has let’s considering that both magnetic
moments 1 and 2 with 𝐼 = 1/2 and quantum numbers 𝑚1=1/2 and 𝑚2=1/2. The term 𝐴 is completely diagonal,
commutes with the Zeeman Hamiltonian, and connects |𝑚1𝑚2⟩ to ⟨𝑚1𝑚2 |. The term 𝐵 connects ⟨𝑚1𝑚2 |
to |𝑚1 + 1, 𝑚2 − 1⟩ or to |𝑚1 − 1, 𝑚2 + 1⟩, a simultaneous flip of both spins happens. The term 𝐶 contains
a raising operator corresponding to each particle, connecting levels separated by Δ𝑀=+1, while the term 𝐷

contains lowering operators that connects levels separated by Δ𝑀=−1 (single quantum transitions). The terms
𝐸 contains two raising operators one for each spin, connecting levels separated by Δ𝑀=+2, conversely 𝐹

connects and Δ𝑀=−2 ("forbidden" double quantum transitions). 𝐶, 𝐷, 𝐸, 𝐹 terms can not be neglected for low
external magnetic fields.

2.4.1 Zero field interaction
In the section 2.2.1 the zero field splitting (ZFS) of the NV− center (spin S=1) was already mentioned to
be caused by the spin-spin dipolar interaction of the unpaired electrons and , in second order, by spin-orbit
interactions [26]

𝐻𝑍𝐹𝑆 = 𝑆
𝑇 ¯̄𝐷𝑆 (2.18)

It is composed by the following components:

¯̄𝐷 =
©­«
𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

ª®¬ S = (𝑆𝑥 , 𝑆𝑦, 𝑆𝑧)

The tensor ¯̄𝐷 is the Zero field splitting tensor, the Hamiltonian can be rewritten in a simplified form considering
it to be in a coordinate system where ¯̄𝐷 is diagonal.

𝐻𝑍𝐹𝑆 = 𝐷

(
𝑆2
𝑧 −

1
3
𝑆(𝑆 + 1)

)
− 𝐸 (𝑆2

𝑥 − 𝑆2
𝑦) (2.19)

𝐷 =
3
2
𝐷𝑧𝑧 𝐸 = 𝐷𝑥𝑥 − 𝐷𝑦𝑦 (2.20)
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2.4.2 Hyperfine interaction between an electron and a nuclear spin
Hyperfine interaction is the name given to the interaction between an electron spin S and a nuclear spin I.

𝐻𝐻𝐹 = 𝑆. ¯̄𝐴.𝐼 (2.21)

The description of the magnetic coupling between an electron and a nearby nuclei requires to consider the
fact that the electron is distributed over a single occupied molecular orbit (SOMO). Two types of orbitals are
important to distinguish, the 𝑠-orbitals an the other orbitals 𝑝, 𝑑, 𝑓 . In the 𝑠-orbitals, the probability of the
electron to be at the nucleus is finite, leading to a singularity of the dipole-dipole interaction, this contribution
to the hyperfine coupling is isotropic and called Fermi contact interaction. [27]
In the case of the non-𝑠 orbitals (𝑝, 𝑑, 𝑓 ) the dipole-dipole interaction averaged result in an anisotropic
contribution to the hyperfine coupling.

Both contributions compose the hyperfine Hamiltonian, these can be written separately.

𝐻𝐻𝐹 = 𝑎𝑖𝑠𝑜𝑆.𝐼 + 𝑆. ¯̄𝐴𝑑𝑑 .𝐼 (2.22)

In the case on which the nuclear spins are weakly coupled to the electron spin (nuclei far from the electron),
the Hyperfine interactions is reduced to:

𝐻𝑛𝑒 =
𝜇0𝛾𝑛𝛾𝑒ℏ2

4𝜋𝑟3 (𝑆.𝐼 − 3(𝑆.r̂) (𝐼 .r̂)) (2.23)

2.5 NMR basics
The nuclear magnetic resonance (NMR) experiments can be described in general terms as a group of techniques
to investigate the properties of nuclei ensembles by studying the recorded transitions between nuclear spin
energy levels, the samples are located in a magnetic field B0 and subjected to radiofrequency (RF) radiation.
As explained in section 2.3, the energy separation is determined primarily by the Zeeman interaction, which
varies linearly with the magnitude of B0, nevertheless, the local environment of the nuclei has some observable
effects due to coupling with nearby particles. The NMR method leans in the property of particles spin, as we
already grasped in 2.3 section, a particle with a spin angular momentum 𝐼 has an angular magnetic moment 𝜇̄𝐼
associated with it. Specifically, in the case of the nucleus and electron

𝜇̄𝐼 = ℏ𝛾𝑛𝐼 (2.24)

Accordingly, the nuclear Zeeman Hamiltonian HZ,Ithat represents the interaction between the static magnetic
field barB0 and the magnetic moment intrinsic to the nuclei barB0.

𝐻𝑍,𝐼 = −ℏ𝛾𝑛𝐼 .𝐵̄0 (2.25)

For the case of a particle with spin I=1/2, consider the conventional orientation established for the static
magnetic field 𝐵̄0 in the Z direction, that being the case, the only component from 𝐼 to be considered is 𝐼𝑍 with
eigenstates denoted by |↑⟩ and ⟨↓| and respective eigenvalues 𝑚𝐼 = +1/2 and 𝑚𝐼 = −1/2 [28]
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Figure 2.9: Zeeman splitting for a nuclei S = 1/2 system in the presence of an external magnetic field 𝐵̄0, a
transition between the two states can take place if radiation with a given frequency 𝜈 that matches the

resonance condition is applied

On that account, the energy eigenvalues that correspond to the Zeeman Hamiltonian are condensed in the
following expression:

𝐸𝑚𝐼
= 𝛾𝐼𝑚𝐼ℏ𝐵0 (2.26)

As we can see in the figure, the energy difference between the two states that arise because of the presence of
the magnetic field:

Δ𝐸 = 𝛾𝐼ℏ𝐵0 (2.27)

Here we can introduce a key concept also in NMR : The Larmor frequency 𝜔0 = 𝛾𝐼𝐵0. Clearly, the energy gap
between two states depend on 𝜔0. We can rewrite this explicit dependence

Δ𝐸 = ℏ𝜔0 (2.28)

As explained in the introduction, a NMR sample is not just one spin, but an ensemble of 𝑁 spins, each of this
spins contribute with the expectation value of 𝐼𝑧, these values are summed and averaged in order to define what
is called Magnetization. [29]

M = 𝛾ℏ𝑁 ⟨𝐼𝑧⟩ (2.29)

We can define the populations of each of the two levels to be the number of spins polarized parallel to the
magnetic field 𝐵0 are denoted 𝑁↑ and those polarized in the antiparallel fashion are denoted 𝑁↓. Under
the condition of thermal equilibrium, we can describe the populations for each level using the Boltzmann’s
distribution.

𝑁↑
𝑁

=

exp
(
𝐸↑
𝑘𝐵𝑇

)
exp

(
𝐸↑
𝑘𝐵𝑇

)
+ exp

(
𝐸↓
𝑘𝐵𝑇

) (2.30)
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𝑁↓
𝑁

=

exp
(
𝐸↓
𝑘𝐵𝑇

)
exp

(
𝐸↑
𝑘𝐵𝑇

)
+ exp

(
𝐸↓
𝑘𝐵𝑇

) (2.31)

Figure 2.10: Polarization sketch in a two energy level system [30]

It is appropriate to introduce the concept of polarization:

𝑃 =
𝑁↑ − 𝑁↓
𝑁↑ + 𝑁↓

(2.32)

In the special case of thermal equilibrium, we can combine (2.28) , (2.33) and (2.32) to obtain

𝑃 = tanh
(
𝐸↑ − 𝐸↓
𝑘𝐵𝑇

)
= tanh

(
ℏ𝜔0
𝑘𝐵𝑇

)
(2.33)

To build up high polarization in traditional NMR, high magnetic fields of order or tens Tesla are used. For
instance, suppose we have at room temperature 300 K the sample of 13C spins in our NMR spectrometer at a
field 𝐵0 = 7 T [8], in order to have in average one spin aligned to the magnetic field we would need 160000 spins
from which most of them will "cancel" one another . This would lead to a polarization value of 𝑃 ≈ 0.0006,
this insignificant percentage is interpreted as the energy levels to be equally populated. Therefore, the signal
intensity in the NMR experiment is also small.

It is possible to notably enhance the signal intensity through an Hyperpolarization technique, this is done
by creating population differences between nuclear spin state. Accordingly, an ensemble that is prepared so
that all the nuclear spins are occupying a certain state is called Hyperpolarized state. Two hyperpolarization
techniques are revisted in this master thesis, these are described in chapter 5.
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Signal detection in NMR
The signal detected in a NMR experiment is the precession of the net magnetization vector M from nuclear
spins. As showed in the diagram below, there is a set of coils which are aligned in the X − Y plane. This set
of coils plays the role of detection coils and also generates the radio frequency (RF) fields need it to be able
to detect the magnetization vector M. The goal of the RF fields is to rotate the magnetization M to the X
direction in order to detect it. Since it is not possible to change suddenly the magnetic field in this manner, the
concept of resonance is used by applying a very small oscillating magnetic field in near or at resonance with
the Larmor precession frequency in order to make the magnetization M to move towards the transverse X − Y
plane. The effect of this oscillating field applied is better understood under a change of reference frame, from
the laboratory frame to the so called rotating frame.

z

y
x

M

Figure 2.11: Magnetization precessing inducing current in a detection coil around the x-axis . The
amplification of this current is the free induction decay signal (FID)

Starting with reinterpret the RF field as a sum of 𝐵+
1 and 𝐵−

1 two counter rotating fields with the same magnitude
𝐵1, we can rewrite the RF field as 𝐵(𝑡) = 2𝐵1 cos𝜔0𝑡 [29].

B1

(1)

(2)

2B1

-2B1

x
time

B1
+

-

Figure 2.12: In (1) two fields rotating in opposite directions B+
1 and B+

1 which
add to give an oscillating field along the x-axis (2)
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The magnetization from the sample will be precessing around the z direction with a positive gyromagnetic
ratio, which means that the component 𝐵+

1 can be discarded since it will not interact with the magnetization
vector. Nevertheless, the component remaining is still time dependent and 𝐵0 is a static field, in order to being
able to establish a relation between this two fields it becomes a necessity to change to a rotating frame where
𝐵1 is also static. The rotating frame rotates about the Z axis with a frequency (−𝜔𝑅𝐹) and in the same direction
as 𝐵−

1 . Consequently, the Larmor precession frequency of the magnetization vector 𝜔0 in the rotating frame is
Ω = 𝜔0 + 𝜔𝑅𝐹 and its respective magnetic field associated Δ𝐵 is called reduced magnetic field

Δ𝐵 = −Ω
𝛾

(2.34)

As illustrated in the figure above, Δ𝐵 and 𝐵1 originate the called effective magnetic field Beff

𝐵eff =

√︃
𝐵2

1 + (Δ𝐵)2 (2.35)

θ

ΔB

B1

Beff

z

x

Figure 2.13: In the rotating frame the magnetization precess around the Beff

When Ω → 0 approaches the resonance condition , which means that the equilibrium magnetization vector
rotates far from the Z-axis, at this point 𝐵1 become relevant since Δ𝐵 → 0

In terms of frequency the fields in the figure can be expressed as:

𝜔1 = |𝛾 |𝐵1 (2.36)

𝜔eff =

√︃
𝜔2

1 +Ω2 (2.37)

𝜔eff = |𝛾 |𝐵eff (2.38)

2.5.1 On-resonance pulse
As already mentioned in the previous subsection, the resonant condition is crucial to detect the magnetization
M. When the transmitter has a frequency is on resonance to the Larmor frequency, this oscillating field is called
an on-resonance pulse. From 2.35 it shows that this resonant condition being met means that Ω=0, therefore
the effective field angle tilt 𝜃=𝜋/2 (90◦).
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Through the precession frequency 𝜔1, the duration of the applied RF pulse tp is related to the angle that the
magnetization is rotated in the following way:

𝛽 = 𝜔1𝑡𝑝 (2.39)

z

-y

M0

M
0
co
s(
β
)

M0sin(β)

β

Figure 2.14: Components of the magnetization vector after applied an on-resonance pulse with a flip-angle 𝛽

In general the components of the magnetization after applying a pulse of certain angle are as showed in the
figure 2.14 are:

𝑀𝑧 = 𝑀0 cos(𝛽)
𝑀𝑦 = −𝑀0 sin(𝛽)

The two most common pulses are the 𝜋/2-pulse that inverts the magnetization from Z-axis to −Y-axis. And
the 𝜋-pulse also known as inversion pulse that brings the magnetization from Z-axis to -Z-axis.

In NMR spectroscopy the resulting spectrum have several Larmor frequencies. Accordingly, the RF field are
made large enough to make the effective field to lay on the x-axis, therefore the magnetization behaves as if the
pulse is on resonance.

Bloch-Maxwell equations
The magnetization vector M evolves in time according to the following motion law [31]:

𝑑M
𝑑𝑡

= 𝛾 [M × B] (2.40)

In the rotating frame of reference, the magnetic field B is the effective magnetic field

𝐵𝑥 = 𝐵1 cos(𝜔0𝑡) 𝐵𝑦 = −𝐵1 sin(𝜔0𝑡) 𝐵𝑧 = 𝐵0 (2.41)

Nevertheless, the equation (2.40) does not accurate describe the magnetization vector evolution, since it does
not consider the fact that the last returns to its equilibrium state M = 𝑀0𝑧, this process is known as Relaxation.
In the rotating frame the relaxation of B components can be described by the following expressions.
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𝑑𝑀𝑥

𝑑𝑡
= −𝑀𝑥

𝑇2

𝑑𝑀𝑦

𝑑𝑡
= −𝑀𝑥

𝑇2

𝑑𝑀𝑧

𝑑𝑡
= − (𝑀𝑧 − 𝑀0)

𝑇1
(2.42)

Adding these set of equations to (2.40) we obtain the differential equations set for the three components of the
magnetization vector M

𝑑𝑀𝑥

𝑑𝑡
= 𝛾(M × B)𝑥 −

𝑀𝑥

𝑇2
𝑑𝑀𝑦

𝑑𝑡
= 𝛾(M × B)𝑦 −

𝑀𝑦

𝑇2
𝑑𝑀𝑧

𝑑𝑡
=
𝑀0 − 𝑀𝑧

𝑇1
+ 𝛾(M × B)𝑧

(2.43)

The solutions for the set of Bloch equations above are:

𝑀𝑥 (𝑡) = 𝑀𝑥 (0) cos(𝜔0𝑡) exp
(
− 𝑡

𝑇2

)
𝑀𝑦 (𝑡) = 𝑀𝑦 (0) sin(𝜔0𝑡) exp

(
− 𝑡

𝑇2

)
𝑀𝑧 (𝑡) = 𝑀𝑧 (0) exp

(
− 𝑡

𝑇1

)
+ 𝑀0

(
1 − exp

(
− 𝑡

𝑇1

)) (2.44)

From the asymptotic limit (𝑡 → ∞) we find the steady solution:

𝑀𝑧 (∞) = 𝑀0 𝑀𝑥 (∞) = 𝑀𝑦 (∞) = 0 (2.45)

In case of the transversal component (𝑀𝑥 (𝑡) and 𝑀𝑦 (𝑡)) their time dependent solution have a sinusoidal
component that represents the precessional motion, while the exponential factor represents the transverse
relaxation effect, the transversal component rotates until it vanishes, this process is called spin-spin relaxation
and is characterized by the constant 𝑇2 . On the other hand the longitudinal component 𝑀𝑧 (𝑡) relaxes to
its equilibrium value 𝑀0, this process is named spin-lattice relaxation or longitudinal relaxation and its
characterized by the constant 𝑇1

2.6 NMR spectroscopy system
The center of the spectrometer is the superconducting magnets that produce an homogeneous magnetic field
𝐵0, the magnetic field is generated by a special coil of wire made with a combination of copper,niobium and
tin through which the current that generates 𝐵0 passes, this coil has to be at a extremely low temperature
(< 6𝐾), to maintain the superconducting property of the coil this last is inserted in a liquid helium bath. A
"heat shield" at 77𝐾 at contact with a bath of liquid nitrogen helps to reduce the amount of helium that boils
off due to heat flow from the environment. To achieve the levels of field homogeneity necessary to satisfy the
NMR experiment demands, the sample is surrounded by a set of shim coils, the current that flows through this
set of coils is adjusted to cancel out the inhomogeneities of 𝐵0. In addition of inhomogeneities, drifts from
the magnetic field 𝐵0 is a factor to control, to compensate the drifts a feedback system called field-frequency
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Figure 2.15: Simplified diagram of a nuclear magnetic resonance spectrometer

lock is implemented to control the stability of 𝐵0 [29]. The piece that connects the outside environment with
the superconducting magnets is a vertical tube that goes through the magnet, it is called the bore tube and it is
also where a cylindrical metal tube, which carries the sample and bring it to the center of the superconducting
magnet, is located, the last is called the probe and on top of it there are the RF-coils which are responsible
for the excitation (transmitter) of the nuclear spins on the sample and at the same time for the detection of the
NMR signal (receiver), a circuit constituted by the probe, a capacitor and the [32] RF-coils control the "tunning
probe" process which consists on adjusting the capacitor until the circuit is resonant at the Larmor frequency
(𝜔𝐿), this process goes in hand with "matching the probe" that is performed for optimizing the power transfer
between the probe and the RF-coils.

2.7 NMR signal acquisition and detection
[33] [29]

The data acquisition starts with converting the NMR signal voltage received to a binary number so it can be
digitally stored, this is done with an apparatus called Analogue to digital converter (ADC) at a certain sample
intervalΔ, also called dwell interval determined by the relationΔ = 1/2fmax,where fmax is the Nyquist frequency
that establish which should be the sample interval to be able to represent frequencies up to this fmax frequency
value

As mentioned in the section above, the shim coils detect the magnetization that constitute the FID (free induction
decay), this signal is mixed with the Spectrometer reference frequency 𝜔𝑟 𝑓 ,consequently the offset frequencies
Ω are passed to the ADC since 𝜔𝑟 𝑓 has a defined phase and the detection takes place on the rotating frame
fixed axis.

The FID signal is the sum of a series of periodic waves with different amplitude,phase and frequencies. This
is detected by the detection channels along the axis X and Y, the general form of the detected signal is the
following

19



Figure 2.16: Components of the free induction decay : Real and imaginary

𝑆(𝑡) = cos(Ω𝑡) exp(−𝑡/𝑇2) + 𝑖 sin(Ω𝑡) exp(−𝑡/𝑇2) 𝑡 ≥ 0
𝑆(𝑡) = 0 𝑡 ≤ 0

Applying the Fourier transform to the signal to convert it onto the frequency domain as indicated by the
expression

𝑆(𝜔) =
∫ +∞

−∞
𝑆(𝑡) exp(−𝑖𝜔𝑡) 𝑑𝑡 (2.46)

The spectrum contains a real and an imaginary part denoted as 𝑅(Δ𝜔) and 𝐼 (Δ𝜔), respectively, while the
frequency parameter is centered around the resonance frequency Ω : 𝜔 = 𝜔 −Ω.

The real part is the one that corresponds to the absorption and the imaginary correspond to the dispersion part,
both are Lorentzian curves and just the real part is of interest.

𝑆(𝜔) = 𝑅(Δ𝜔) − 𝑖𝐼 (Δ𝜔) (2.47)

Nevertheless, in practice the dispersion and absorption parts are not totally differentiated since generally the
magnetization acquires phases due to the reason that the 𝜋/2-pulse applied does not align the magnetization
with the detection real channel and also because of the delay between the end of 𝜋/2-pulse and the start point
of the data acquisition step.

To obtain the absorption part of the spectrum phase correction is applied.There are two types of phase correction,
the zero-order phase correction that helps to differentiate the absorption part of the spectrum from the dispersion
part, and the first-order phase correction that is required to correct the effect of the delay between pulse and
acquisition when these delays are of the same order of the frequency offsetΩ. The phased spectrum is expressed
as

𝑆𝑝 = 𝑆(𝜔) exp(−𝑖(𝜙0 + 𝜙1𝜔Δ𝑡)) (2.48)

20



2.7.1 EPR Basics
[27][34]

The electron paramagnetic resonance (EPR) spectroscopy, also known as electron spin resonance (ESR) is a
method for studying materials that have unpaired electrons. This section briefly explains the most relevant fea-
tures of this technique since some samples used in this master thesis were characterized using this spectroscopy
technique.

The principles in which the EPR spectroscopy are basically the same as the principles in which the NMR
spectroscopy are based. The differences result from the fact that the gyromagnetic ratio of the electron 𝛾𝑒 is
much larger than the one of the nuclei 𝛾𝐼 due to the fact that the nuclear particles have masses (1836×𝑚𝑒), for
this reason the nuclei spin at a much slower frequency, therefore the Boltzmann polarization 2.33 is much larger
at the same magnetic static field . The photons detected have a much higher frequency (in order of GHz) and
the relaxation times are approximately 6500 shorter, this features make EPR much more sensitive and allows a
much faster repetition of experiments than NMR.

This can be seen by the electron Zeeman effect for an electron spin with 𝑆 = 1/2 two level system, the
nuclear Zeeman effect for a two level system is described section 2.5. Both are basically the same, but with the
difference in energy scales just mentioned. The electron Zeeman effect will be described with the nomenclature
usually employed in the EPR community.

Considering that, in the absence of an external magnetic field, the magnetic moment of the electron spin is
randomly oriented and the two energy levels are degenerate. The presence the presence of an external magnetic
field 𝐵̄0 leads to the splitting of the energy levels. The following Hamiltonian expressed in frequency units
describes the system

𝐻𝑍𝐸𝐼 =
𝑔𝑒𝛽𝑒

ℎ
𝑆.𝐵̄0 (2.49)

Here 𝑔𝑒 is the free electron Landé factor 𝑔𝑒 = 2.0023, the constant 𝛽𝑒 = 𝑒ℎ
4𝜋𝑚𝑒

which after simplifying is 𝛽𝑒=
9.274 × 10−24 J/T. The energy eigenvalues obtained from the Hamiltonian 𝐻𝑍𝐸𝐼 are solely determined by the
projection of the electron spin 𝑚𝑠 which in this case can take the values (-1/2,1/2).

𝐸 (𝑚𝑠) =
𝑔𝑒𝛽𝑒

ℎ
𝐵0𝑚𝑠 (2.50)

Consequently, the energy difference between the two Zeeman states is given by :

Δ𝐸 (𝑚𝑠) =
𝑔𝑒𝛽𝑒𝐵0
ℎ

(2.51)

In this simple case of Zeeman interaction, the most basic EPR experiment could consist in irradiating the
system with a field of varying frequency 𝜈. The resonance condition met means that the frequency 𝜈 matches
the energy difference Δ𝐸 , allowing transitions between the two states 𝑚𝑠 = ±1/2

Δ𝐸 = 𝜈 (2.52)
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Figure 2.17: Zeeman splitting for an electron S = 1/2 system in the presence of an external magnetic field 𝐵0,
a transition between the two states can take place if radiation with a given frequency 𝜈 that matches the
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Figure 2.18: Absorption spectrum

CW EPR experiment
In contrast to the NMR spectroscopy where Fourier transform techniques covers the whole spectrum that can
be excited simultaneously by pulses. On the contrary, the EPR spectra are much broader than the bandwidth
of a microwave resonator, on account of this reason the continuous wave (CW) approach is a pulsed method
used in most of EPR spectrometers. Unlike NMR spectroscopy, the frequency of the radiation (CW) is kept
constant, and the magnetic field 𝐵0 is varied, sweeping this last establishes the resonance condition for the
spins to obtain the absorption spectrums.

It is shown in figure 2.19 a block diagram of an standard EPR spectrometer. The source of CW radiation is fixed
frequency established, the microwave (CW) generated by the source passes through an attenuator in order to
adjust its power, after that the CW passes through a circulator to the sample located in a resonant cavity placed
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in the middle of an electromagnet, the microwave that returns from the sample undergo the same circulator and
combined with reference microwave of adjustable power and phase before it detected by a microwave diode,
the output signal is detected by a phase-sensitive detector (PSD) where is demodulated and amplified, finally
the output signal is digitalized and processed by a computer software.

Figure 2.19: Scheme of a CW EPR spectrometer [27]
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Chapter 3

Experimental methods

3.1 Experimental set up for hyperpolarization
In chapter 5 the two polarization transfer mechanisms were explained. In this section is described the experi-
mental set up used to induce the polarization transfer of the electron spins of the NV centers to the 13C nuclear
spins through the cross polarization mechanism and through the Landau Zener mechanism.

The experimental set up is composed by the following parts :

• PC control

• NMR spectroscopy system

• Helmholtz-like coil pair I (Low field unit)

• Helmholtz-like coil pair II (generate sweep fields)

• Programmable power supply

• Power supply

• Shuttling system

• Cooling system

• Laser

• Laser diode

• Arduino controller board

• Red Pitaya board

• Analog controlled current regulator

Two very similar hyperpolarization setups were employed. The first hyperpolarization setup (set up 1) was
designed to improve NMR signals of the 13C nuclei by using a range of static magnetic fields in order to induce
cross polarization. And the second setup improve NMR signals by employing time dependent magnetic fields
superposed to static magnetic fields in order to induce Landau Zener transitions (set up 2)
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The hyperpolarization set up 1 is managed by modules written in Python that control and automatize the
experiment cycles. The sample probe is positioned in the shuttling system in the middle of the low field unit
that generate a range of static magnetic fields in the z-direction, they values lay within a range of 48 mT and 54
mT. At the same time the sample is irradiated with a 532 nm laser with a power between 1 to 3 W is employed
in order to polarize the NV centers to 𝑚𝑠 = 0 state during an irradiation time that can take values between 10
to 30 s , the light undergoes a fiber optic and positioned in a hole located in the metal shield that covers the
sample. The current and temperature stabilization of the laser is managed by a laser diode that is fed by the
programmable power supply. This last is controlled by the Arduino board, along with the cooling system, is
also controlled by the Python modules . After the laser pumping time, the sample is transferred by the shuttling
system to the center of superconducting magnet (at ≈ 9T and proton Larmor frequency of 300 MHz) and with
the help of the spectrometer part of the NMR setup the free induction decay signal is recorded.
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cooling 
system

laser 

laser diode

Arduino 
controller

Current
source II

Sample

Current 
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Shuttling
system

Magnetic field 
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Figure 3.1: Diagram of the experimental set up 1

The hyperpolarization set up 2 is different from the hyperpolarization set up 1 in that a smaller set of Helmholtz-
like coils set array is placed concentric to the low field unit as showed in the setup scheme. This additional
piece generates the magnetic field sweeps superposed to the static magnetic fields. In order to generate the
sweep fields, the Red Pitaya board sends a saw-tooth profile signal through SCPI commands, this signal is
stabilized by an analog controlled current regulator fed by a power supply.
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Figure 3.2: Diagram of the experimental set up 2
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3.2 Diamond samples
The experiments performed were done with two types of samples : HPHT produced diamond micro particles
(also called as diamond powder) and single milimeter-sized crystals.

3.2.1 Diamond micro particles
The concentration of substitutional nitrogen P1 and NV centers were obtained from cw EPR experiments . The
measurements were performed at room temperature without illumination by Prof. Andreas Pöppl. The spin
numbers for P1 and NV centers were determined for each of the five samples. No CW EPR measurements
were taken for the sample id273, an approximation was estimated based on the P1 concentration of the sample
id275 since both were exposed to similar fluence values.

sample id fluence NV− number of spins P1 number of spins CNV−(ppm) CP1(ppm)
280 no irradiation 0 2.6 ×1017 0 89.1 ± 17.8
277 1.2 ×1016 0 1.9 ×1017 0 53.9 ± 10.8
276 4.4 ×1017 1.2 ×1015 1.7 ×1017 1.23 ± 0.37 68.8 ± 13.8
275 1.2 ×1018 2 ×1015 1.5 ×1017 0.49 ± 0.123 58.0 ± 11.6
274 8.1 ×1017 3.4 ×1015 1.9 ×1017 0.82 ± 0.25 61.7 ± 12.3
273 2.8 ×1018 - - ≈ 1 ≈ 60

Table 3.1: NV− and P1 spin concentrations in diamond powder samples
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Figure 3.3: The plots relating the concentration of NV center and P1 vs electron fluence are showed below,
considering the 30% error bar for NV center and the 20% error bar for P1 on the CW measurements.
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3.2.2 Diamond single crystals
The sample id291 is composed by single milimeter-sized crystals randomly oriented respect to one another.
The concentration characteristics were obtained from ([11]).

sample id fluence CNV−(ppm) CP1(ppm)
291 2.8 ×1018 3 30

3.3 Nutation experiment
To determine the correct 𝜋 pulse duration was a required step for the experiments performed for this master
thesis.
In this section, the Nutation experiment is briefly described in order to explain how the calibration of the
𝜋-pulse was performed.

π/2

Nutation
 pulse

Acquisition
  pulse

t
tp

FID

Figure 3.4: Scheme of the pulse sequence used for the nutation experiment
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Figure 3.5: Scheme of a pulse calibration experiment

As showed in the expression 2.39, the the nutation angle is proportional to the pulse length, which leads to the
following expressions to determine the 𝜋-pulse length

𝜋 = 𝜔1𝜏180 (3.1)

𝜔1 =
𝜋

𝜏180
(3.2)

The nutation experiment is based on measuring the nutation of the magnetization vector M in a direct way.
This is achieved by applying a pulse sequence of systematic increasing duration length (tp in 3.4) consecutively
[35]. One can observe how the spectra changes according to the change of the pulse flip angle.

The sequence of pulses make M to rotate on the Z − Y plane, after a period of time a 𝜋/2-pulse is applied to
record the FID signal. The FID signals are then processed in order to obtain the integral part of the spectra
obtained through FFT. After that, the integral values are plotted with respect to the duration of the applied
pulses from which the duration of the 𝜋-pulse is obtained through a fitting process.

3.4 Determination of 𝜋-pulse length
To determine the 𝜋-pulse length a nutation experiment was performed using 20 pulses of increasing duration.
The FID set processing step was performed using PyNMR, this is an open source set of python modules developed
to analyze NMR data. The integral values were plotted with respect to the duration of the 20 applied pulses
and fitted with the function:

𝑓 (𝑡) = 𝐴 sin
(
𝜋𝑡

𝜏180

)
(3.3)

Here 𝜏180 represents the duration of the 𝜋-pulse, A is the amplitude.
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Figure 3.6: Inversion recovery sequence

The result of the fitting leads to a a 𝜏180=18.5549 µs

3.5 Inversion recovery method to estimate T1

In this master thesis the value of T1 for 13C in diamond powder was estimated from inversion recovery
experiments. The pulse sequence of this technique consists in applying first a 𝜋 pulse in order to invert the
initial magnetization to 𝑀𝑧 (0) = −𝑀0 and leave it to for a time interval 𝜏, this transforms 𝑀𝑧 (𝑡) (2.44) [29] to :

𝑀𝑧 (𝜏) = 𝑀0

(
1 − 2 exp

(
− 𝜏
𝑇1

))
(3.4)

After 𝜏 a 𝜋/2 pulse is applied, the FID is recorded and processed, in our case with the PYNMR package. The
experiment has to be repeated and the time between experiments 𝑡𝑟 is determined by 𝑇1 value of the species
that is going to be measured in the following manner, since it is necessary to wait until the magnetization goes
back to equilibrium. :

𝑡𝑟 = −𝑇1 ln(1 − 𝑓 ) (3.5)

Where 𝑓 is the fraction of the equilibrium magnetization value to which the system returns. For a 99% of
equilibrium magnetization value, the suitable time between experiments is 𝑡𝑟 = 5 × 𝑇1.
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Figure 3.7: Inversion recovery sequence

3.6 T1 measurements through the inversion recovery method

The 𝑇1 values for 13C have been obtained for the samples id280 and id291. The magnetization recovery curve
were fitted with the expression (3.6) characterized by the 𝛾 parameter.

𝑀𝑧 (𝑡) = 𝑀𝑧 (0) (1 − 2exp(−𝛾𝑡/𝑇1)) (3.6)

sample id fluence CNV−(ppm) CP1(ppm)
291 2.8 × 1018 3 30
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Figure 3.8: id291
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In the case of the diamond micro particles sample id280, four inversion recovery experiments were conducted

sample id fluence 𝐶𝑁𝑉−(ppm) 𝐶𝑃1 (ppm)
280 no irradiation 0 89.1 ± 17.8
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Figure 3.9: id280 (1)
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Figure 3.10: id280 (2)
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Figure 3.11: id280 (3)
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Figure 3.12: id280 (4)

3.6.1 Calibration
Calibration of Helmholtz coil pairs
In this section it is showed the calibration plots of the low-field unit Helmholtz coils that generates the offset
magnetic field and the second pair of Helmholtz coils that generate the sweeping field for the Landau-Zener
transitions. The calibration procedure is the same for each set of coils.

The calibration set up consists in a Hall sensor supported by a micrometer set up that operates in the three
directions, a current source connected to the set of coils.
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The first step of the calibration process is performed by locating a Hall sensor between the coils at a certain
fixed position in the Z symmetry axis and sweeping the Hall sensor on the X − Y plane , the power source is
fixed at a certain current value I. A color map is plotted to find the position where the magnetic field B is
the highest. With this position already found, the second step is to fix this position and vary the current up to
I = 7A for the low field unit and up to I = 1A to the set of coils that generate the sweeping field. The relation
between the magnetic field B and the current I is, as expected, linear.
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Figure 3.13: Low field unit coils set colored map
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Red pitaya

Half-ramp (sawtooth) magnetic field sweeps are necessary to induce the Hyperpolarization of 13C and study the
spin dynamics due to Landau-Zener transitions. The Red Pitaya STEMlab 125-10 platform is used to estimate
the time dependence of the magnetic field sweeps.

The Red Pitaya platform is basically a data acquisition system that generates and acquire digital and analog
signals for general purposes. The principal benefit that offers is its affordability and capability to replace
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Figure 3.17: Red Pitaya board, position of components .

a variety of costly measurement and control instruments. Additionally, the board features two ADCs and
two DACs which operate at 125 MS/s (106 samples per second). These are the interface between the SoC
processing system and the Red Pitaya fast analog I/Os, and it is this unique combination of data-acquisition and
processing components that gives the platform its versatility as an instrumentation tool. The main element of
the Red Pitaya is a Xilinx Zync 7010 system-on-chip (SoC) device that contains a dual core ARM Cortex-A9
processor and a Field Programmable Gate Array (FPGA). The ARM processor is capable of running full
operating systems, and the Red Pitaya uses this feature to run a custom Linux operating system which is loaded
on an SD card [36]. The connection between the PC and the RP a is done with a LAN cable, at the same time
the RP board must be connected to the network router so the DHCP server that runs in the router gives an IP
address to the Red Pitaya board. To control the RP board the RP SCPI (Standard Commands for Programmable
Instrumentation) were used, the commands to perform the generate the data and acquire it were written in a
Python script.

Calibration of the magnetic field sweeps
The magnetic field sweeps are saw-tooth shaped and characterized by their slope, which will be called rate 𝑅𝑠
from this point.
The sweep field rate 𝑅𝑠 is defined by the sweep field range 𝛿𝐵 which plays an important role since it defines
the beginning and end of the sweep field. With both 𝛿𝐵 and 𝑅𝑠, the duration of one magnetic sweep field is
established tperiod.

𝛿𝐵 = BF − BI (3.7)

tperiod =
𝛿𝐵

𝑅𝑠
(3.8)
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Figure 3.18: Diagram of the calibration set up of the magnetic field sweeps
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The calibration of the magnetic field sweeps were performed with the set up showed on 3.18. The RP SCPI
commands in a python script generates the saw-tooth signal and acquires the voltage read by the Hall sensor,
in the middle of the diagram there is an analog controlled current regulator which is connected to a power
source and also connected to the concentric Helmholtz array that receives the saw-tooth signal, between the
two concentric coils the Hall sensor is positioned to read the output voltage.

With the help of (3.9), where s=31.25 V/T is the sensitivity parameter found in the Hall sensor’s datasheet
([37]), Voff is the offset voltage and Vout is the output data read from the Hall sensor, the values of the magnetic
field are obtained and the magnetic field dependence of time can be established.

𝐵(𝑇) = Vout − Voff
𝑠

(3.9)

This procedure were repeated with different saw-tooth signal frequency values (e.g 2,10,50,100 Hz). In the
figure (3.19) it is showed the dependence between the magnetic field sweeps and time obtained for a saw-tooth
signal with 100 Hz sent through the RP to the small Helmholtz coil array. The figure (3.20) shows the maximum
and minimum magnetic field values that compose the ranges [2, 5, 10, 28.292] mT of the magnetic field sweeps
for different frequencies of the output saw-tooth signal.
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Chapter 4

Experimental results

This chapter is divided three parts: The data post-processing and the other two sections : Induced Landau-Zener
transitions experimental results and Cross polarization induced experimental results.
The first section is subdivided in four subsections that are defined in function of the parameter that is altered
during the experiments . These parameters can be the magnetic field sweep rate Rs, the static magnetic field B,
or the magnetic field sweep range 𝛿B. The samples mentioned in this subsection are described in the table 3.1

4.1 Data post-processing
All the analysis were performed using the PyNMR open source set of python modules to parse, process and
analyze NMR data. This tool kit support Bruker Topspin data format among others.

In this section presents the post-processing procedure of the data obtained from the experiments performed.
One of the data sets from the experiment array to induce Landau Zener transitions is used as an example.

The purpose of the post-processing is to obtain the integral of the real part of the spectrum which is the
polarization signal of the 13C nuclei in the sample. The sample used correspondent to this data set is the
sample id275. This sample was irradiated by the laser beam with power of 3 W during 25 second per scan.
The magnetic sweep field rates were varied 7 different values which lay within the range Rs = [100, 1000]
mT/s and 𝛿B= 6 mT . The magnetic field sweeps are superposed on a static magnetic field of B = 49 mT, the
measurements for each magnetic sweep field rate is repeated 128 times (scans)

The first step of the data processing start with reading of the free induction decay signal (FID) recorded. In
the set of FID signals a persistent initial noise is displayed, this noise had to be eliminated by applying a "left
shift" which is the process of discarding the data points caused by the noise . The first miliseconds of the FID
signals were discarded ,this is done by eliminating the first 20 data points. The left shift is applied in the same
way to all data sets

The second step is to average the FID signals over the repetitions of a experiment with the same parame-
ter values. In the data set used as example, the only parameter that varies is Rs, therefore the FID signals for
each measurement with the same Rs value are averaged.

The third step consists in suppressing the data at the end of the FID signal which is mostly noise, this is
done through a process called Apodization which consists on multiplying the FID by the called Apodization
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function, in this case an exponential decay function were chosen for the Apodization step with a decaying factor
determined by the Line broadening parameter which was fixed to be LB= 300 Hz.
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Figure 4.1: Sample id275: Set of averaged FID signals

The fourth step consists in applying a fast Fourier Transform (FFT) to the averaged FID signals to obtain the
NMR spectra.

The fifth step consists in applying a zero order phase correction to each one of the averaged resulting FFT
spectra set .These phase values are stored and the one that corresponds to the real part integral highest value
was chosen to multiply all the averaged FFT.

Figure 4.2: Sample id275: Set of averaged FFT NMR spectra
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The last step is to calculate the area under each NMR spectra by integrating its real part . The values of the
integrals are the measurement of the polarization, these are plotted with respect to Rs.
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Figure 4.3: Sample id275: Real part of NMR spectra integral for the set of magnetic sweep field velocities Rs
values indicated in the figure. This sample was irradiated by the laser beam with power of 3 W during 25

second per scan, the magnetic field sweeps are superposed on a static magnetic field of B = 49 mT,
measurement for each magnetic sweep field rate is repeated 128 times

4.2 Induced Landau-Zener transitions experimental results

8000 7000 6000 5000 4000 3000 2000 1000 0
frequency (HZ)

0.0

0.5

1.0

1.5

2.0

2.5

NM
R s

ign
al (

arb
. u

nit
s)

1e8

Figure 4.4: Sample id275: Real part of NMR spectra integral for a static magnetic field B = 49 mT, the laser
irradiates the sample in three spatial directions with power of 3 W during 20 second per scan, at the same time

the magnetic field sweeps are superposed on a static magnetic field with rate Rs = 800 mT/s and range
𝛿𝐵 = 5 mT , this measurement is performed 128 times
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Figure 4.5: Sample id275: Real part of NMR spectra integral for a static magnetic field B = 49 mT, with the
laser is off, at the same time the magnetic field sweeps are superposed on a static magnetic field with rate
Rs = 800 mT/s and range 𝛿𝐵 = 5 mT , this measurement is the thermal signal measurement and it is also

performed 128 times

Comparing the values of the integral spectra showed in figure 4.5 and figure 4.4, the integral value of the
thermal signal is bigger than the integral value of the signal generated with the laser . Therefore, if transitions
are induced it is done the thermal state, this extends to the results showed in 4.3 since the sample is the same.

4.2.1 Results by varying the magnetic field sweep rate Rs

In the data post processing section, one of the data sets originated by varying the magnetic field sweep rate Rs
was used as an example. The set of parameters used for the sample id275 that give the results in figure 4.3
are also used for the sample id280. This results can be partially interpreted as the polarization obtaining its
maximal value for a magnetic field sweep rates of Rs= 250 mT/s with a magnetic field range of 𝛿B= 6 mT.
Then the polarization decays and increases again for the last two values of the magnetic field sweep rates, I can
not suggest a reason for this. The parameter T1 was calculated for this sample, leading to a T1 of approximately
100 s, this measurement was done with a magnetic field of 7T. In the reference [38], the T1 values for a sample
of similar concentration for a magnetic field of around 50 mT was calculated to be 2.5, we can approximate the
T1 for our sample to have a value of the same order. With this, we can estimate the relaxation process of the
polarization signal between 400 mT/s to 700 mT/s to lay within the value of T1.
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Figure 4.6: Sample id280: Real part of NMR spectra integral for the set of magnetic sweep field velocities Rs
values indicated in the figure. This sample was irradiated by the laser beam with power of 3 W during 25

second per scan, the magnetic field sweeps are superposed on a static magnetic field of B = 49 mT and with a
magnetic field range of 𝛿B= 6 mT, measurement for each magnetic sweep field rate is repeated 128 times

4.2.2 Results by varying the static magnetic field B
The sample used was the sample id273 in the table3.1. The irradiation power of the laser employed was of 1 W
and the irradiation time was set to be 15 s. For each magnetic field value 32 scans were performed, leading to
a total of 352 scans. The static magnetic field set is B0 = [45, 55] mT, the magnetic field sweep rate was set
to be Rs = 700 mT/s and a magnetic field range 𝛿B= 2 mT. We can see in figure 4.7 that at beginning of the
signal it is unclear why the polarization is built in that value, on the other hand in the magnetic field value of
48 mT, since the magnetic field range is 𝛿B= 2 mT we could suggest that the polarization is built up because
of the Hyperfine coupling interaction between intrinsic 14N and P1 centers, similarly with the magnetic field
value of 49 mT. After passing that region the polarization decays, which is expected because of the spin lattice
relaxation process.
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Figure 4.7: Sample id273: Real part of NMR spectra integral for the set of static magnetic fields indicated in
the figure. This sample was irradiated by the laser beam with power of 1 W during 15 second per scan,

magnetic field sweeps of 𝛿B= 2 mT and Rs = 700 mT/s are superposed on a static magnetic field set of values,
measurement for each magnetic sweep field rate is repeated 32 times, leading to a total of 352 scans

4.2.3 Results by varying the magnetic field range 𝛿𝐵
The sample used was the sample id273 in table 3.1. The magnetic field range is the parameter that varies, it took
five different values 𝛿B = 1, 2, 3, 4, the static magnetic field value was set to be B= 48.5 mT, and the magnetic
field sweep rate that superpose the static magnetic field was set in the value Rs = 700 mT/s. The irradiation
power of the laser employed was of 1 W and the irradiation time was set to be 15 s. For each magnetic field
range value 16 scans were performed, leading to a total of 80 scans. It shows in 4.8 that the polarization takes
maximum values for the first two data points for unclear reasons, after that the relaxation occurs.
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Figure 4.8: Sample id273: Real part of NMR spectra integral. The magnetic field sweep range varied
through 5 values depicted in the figure . The static magnetic field was set B= 48.5 mT while the magnetic
field sweep rate was set at Rs = 700 mT/s. For each magnetic field range value 16 scans were performed,

leading to a total of 80 scans.

4.3 Induced cross polarization experimental results
To take this measurements, the experimental set up 1 was used with the sample id291 in table 3.1.

For this experiment 44 static different magnetic field values were applied, these laid on within a range of
B = [48.5, 53.5] mT. The applied irradiation power of the laser was of 1 W. The laser irradiation time was set
to be of 15 seconds per scan. The total number of scans per magnetic field value was of 33, leading to a total
of 1408 scans. The irradiation power of the laser employed was of 1 W and the irradiation time was set to be
15 s. For each magnetic field value 32 scans are performed, leading to a total of 352 scans.
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Figure 4.9: Sample id291: Set of averaged FID signals
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Figure 4.10: Sample id291: Set of averaged FFT NMR spectra
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Figure 4.11: Sample id291: Real part of NMR spectra integral for the set of static magnetic field values
showed in the figure. The irradiation of the laser onto the sample was done with a power of 1W during 15 s
per scan in the presence of the static field different values. The number of measurements per static magnetic

field value is of 32, leading to a total of 352 scans

The polarization pattern is analyzed in the simulations chapter 6
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Chapter 5

Mechanism of polarization transfer

5.1 Cross-polarization
The Cross-Polarization is a key NMR technique used to enhance the polarization signal of a nuclei spin system
with a small gyromagnetic ratio (S) (e.g 13C) present in a low concentration from other spin system with larger
gyromagnetic ratio (e.g 1H) present in larger concentration. This polarization transfer is possible from the last
system to the first because of the dipolar coupling between the spin systems.
The Cross Polarization technique consists on applying two pulses (RF fields) at the same time to the two nuclei
systems A and B, the goal is to transfer the polarization from B to A, the fields are adjusted to induce the
cross-polarization,the Hartmann-Hahn condition must be fulfilled for the polarization transfer to take place.

𝛾𝐴𝐻1𝐴 = 𝛾𝐵𝐻1𝐵 (5.1)

The terms 𝐻1𝐴 and 𝐻1𝐵 are the resonant radio-frequency fields while 𝛾𝐴 and 𝛾𝐵 are the gyromagnetic ratios
for the nuclei spin systems 𝐴 and 𝐵. The sensitivity, which is the Magnetization enhancement is proportional
to 𝛾B/𝛾A.

In this master thesis radio-frequency fields were not employed. Nevertheless a condition an energy matching
condition will be necessary for the cross-polarization to happen. This energy matching condition depends
on the eigenstates of the systems involved in the Cross-polarization process and the parameters on which the
evolution of the system depends.

Δ𝐸𝐴 = Δ𝐸𝐵 (5.2)

5.2 Landau-Zener transitions

5.2.1 Landau-Zener theory
In 1932, the first description of the Landau-Zener dynamics were explained [39]. In this paper the system
under study is a molecule composed by two protons separated by a distance 𝑅 . Consider two electronic
configurations 𝜑1(𝑥, 𝑅) and 𝜑2(𝑥, 𝑅)
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We have two energy eigenstates in our system. The Hamiltonians are

𝐻 (𝑅)𝜑𝑖 (𝑥, 𝑅) = 𝐸𝑖 (𝑅)𝜑𝑖 (𝑥, 𝑅) (5.3)

The figure (6.8) is a copy of the diagram found in [39]

R0

E1(R)

E2(R)
p

np

np

p

E(R)

R
Figure 5.1: Crossing of polar and non polar states at 𝑅0 [40]

In the figure 𝑝 stands for "polar molecule" (molecule with a permanent dipole moment) and 𝑛𝑝 stands for
"non-polar" , this figure shows how the polar and non polar characteristics in the states depend on the distance
𝑅 when 𝑅 = 𝑅0. The relevance of the system lies on the following possible phenomena : If 𝑅 changes slowly
around 𝑅0 then the states remain the same, if it changes fast then 𝜑1(𝑥, 𝑅) → 𝜑2(𝑥, 𝑅) . This molecule can be
subjected by outside interactions , therefore R can be time dependent 𝑅(𝑡).

𝐻 (𝑅(𝑡))𝜑𝑖 (𝑥, 𝑅(𝑡)) = 𝐸𝑖 (𝑅(𝑡))𝜑𝑖 (𝑥, 𝑅(𝑡)) (5.4)

Solving (5.3) for all values of 𝑅 it is equivalent to solve (5.4) for all times 𝑡. Therefore we have the instantaneous
energy eigenstates 𝐸𝑖 (𝑅(𝑡)) .

From this point, we can generalize the problem to a two level system as shown in [41] , and the position 𝑅 to
any parameter 𝑞 which is time dependent, in the case of this master thesis this parameter would be the magnetic
field sweeps amplitudes.

The generalized problem is represented by this diagram

We have now two states of a two level system |1⟩ and |2⟩, and two Hamiltonian operators: 𝐻0 corresponding
to the unperturbed system and 𝐻𝑝 = 𝐻0 +𝑉 ′ that represents the perturbed system.

𝐻0 |𝑛⟩ = 𝐸0
𝑛 |𝑛⟩ (5.5)

𝐻𝑝 |𝑛⟩ = (𝐸0
𝑛 +𝑉 ′) |𝑛⟩ (5.6)
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Which leads to the energy eigenvalues for the perturbed system:

𝐸𝑛 (𝑞) = 𝐸0
𝑛 (𝑞) + ⟨𝑛|𝑉 ′ |𝑛⟩ (5.7)

The perturbed Hamiltonian 𝐻𝑝 in the ordered basis |1⟩ and |2⟩ can be expressed in a matrix form.

𝐻𝑝 (𝑞) =
(

𝐸0
1 + ⟨1|𝑉 ′ |1⟩ ⟨1| 𝐻0 |2⟩ + ⟨1|𝑉 ′ |2⟩

⟨2| 𝐻0 |1⟩ + ⟨2|𝑉 ′ |1⟩ + 𝐸0
2 + ⟨2|𝑉 ′ |2⟩

)
(5.8)

The terms ⟨1|𝑉 ′ |1⟩ and ⟨2|𝑉 ′ |1⟩ are zero, as well as the terms ⟨2| 𝐻0 |1⟩ and ⟨1| 𝐻0 |2⟩. The non-diagonal
terms can be rewritten in terms of a new variable 𝐸0 = 2 ⟨1|𝑉 ′ |2⟩. With these simplifications 5.8 is reduced
to :

𝐻𝑝 (𝑞) =
(
𝐸1(𝑞) 1

2𝐸0
1
2𝐸0 𝐸2(𝑞)

)
(5.9)

The eigenvalues of the perturbed Hamiltonian 𝐻𝑝 are :

𝐸± =
1
2

(
𝐸1 + 𝐸2 ± 2

√︃
(Δ𝐸 (𝑞))2 + 𝐸2

0

)
(5.10)

The term Δ𝐸 (𝑞) = 𝐸1 − 𝐸2 The eigenstates of the perturbed Hamiltonian (𝐻𝑝 )are |𝑎⟩ and |𝑏⟩ with the
respective energy eigenvalues 𝐸𝑎 = 𝐸+ and 𝐸𝑏 = 𝐸−.

From the diagram we can see that in the unperturbed case 𝐻0 (with eigenenergies represented by the dashed
straight lines) the system has a degeneracy point 𝑞𝑐. According to the non-crossing theorem, the degeneracy of
the unperturbed system 𝐻0 is broken due to the presence of the perturbation 𝑉 ′ that couples the energy levels ,
this cause the energy levels to repel . The avoided crossing area is characterized by the separation between the
energies 𝐸0 and by the width 𝑞0.

The behaviour of the system during a time interval (𝑡𝑖, 𝑡 𝑓 ) that correspond to the change of the general
parameter 𝑞(𝑡) in the interval (𝑞𝑖 (𝑡𝑖), 𝑞 𝑓 (𝑡 𝑓 )) . Assuming that the state of the perturbed Hamiltonian 𝐻𝑝 is a
linear combination of its basis |𝑎⟩ and |𝑏⟩ : 𝜓(𝑡) = 𝑐𝑎 (𝑡) |𝑎⟩ + 𝑐𝑏 (𝑡) |𝑏⟩, and that at time 𝑡𝑖 the initial state is
|𝑏⟩, the probability that the system has to made a diabatic transition to |𝑎⟩ is given by:

𝑃𝑏→𝑎 =
��𝑐𝑎 (𝑡 𝑓 )��2 =

��〈𝜓(𝑡 𝑓 )��𝑎〉��2 (5.11)

𝐸1 and 𝐸2 are a linear in function of 𝑞, and 𝑞 is swept at a constant rate Γ through the avoided crossing, in the
limits of 𝑡𝑖 → −∞ and 𝑡 𝑓 → +∞ the diabatic transition (non-adiabatic transition) from |𝑏⟩ to |𝑎⟩ is equivalent
to go through |1⟩ to |1′⟩, as well as the state to remain adiabatic in |𝑏⟩ is equivalent for the state to go from |1⟩
to |2′⟩ . Under these time limits the probability (5.11) can be solved as it is shown in [41] and in more detail in

𝑃1→1′ = exp(−2𝜋Γ) (5.12)
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Figure 5.2: Energy diagram as a function of the general parameter 𝑞, the unperturbed states are represented
by |1⟩,|1′⟩ and |2⟩,|2′⟩, the primed states are the states of the system for 𝑞 > 𝑞𝑐, the perturbed states by |𝑎⟩ and

|𝑏⟩

The parameter Landau Zener parameter Γ is

Γ =
|⟨1|𝑉 ′ |2⟩|2

ℏ(𝑑𝐸/𝑑𝑞) (𝑑𝑞/𝑑𝑡) (5.13)

The expression 5.12 is the Landau Zener transition probability for this special case with the time conditions
𝑡𝑖 → −∞ and 𝑡 𝑓 → +∞. In practice, the Landau-Zener transition problem can not be solved analytically,
but numerically. Nevertheless, from this simple case we can gain some understanding of the Landau-Zener
transitions which are transferable to real systems.

From (5.13) it is clear that when the sweep is very slow 𝑑𝑞/𝑑𝑡 → 0 the system will stay in the initial
state |𝑏⟩ which means that the diabatic probability transition from |1⟩ to |1′⟩ is 𝑃1→1′ → 0 . Conversely, when
the sweep is fast 𝑑𝑞/𝑑𝑡 → ∞ the diabatic transition probability is high 𝑃1→1′ → 1. In addition, the parameter
𝐸0 also plays a complementary role to the sweep 𝑑𝑞/𝑑𝑡 , this is also noticeable from the energy levels diagram
5.2 : If |⟨1|𝑉 ′ |2⟩| → 0 then the diabatic transition 𝑃1→1′ → 1 [42]
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Chapter 6

Simulations

In this section the results and simulations are presented in two separate subsections according to the polarization
transfer mechanism under which each of the two experimental arrays were prepared.

The simulations performed in this master thesis were performed using the Python based toolkit named
Qutip[43] were employed.

6.1 Cross Polarization transitions
Studies such as [38] already demonstrated the efficiency of NV centers to transfer at room temperature elec-
tronic polarization to nuclear 13C spins by exploiting the optical initialization property of NV centers and the
Hyperfine interactions of a NV-P1-13C.

In this master thesis the experiment and simulations performed to study the polarization transfer in the system
NV-P1-13C, following the work in [44]. In this reference, the Hyperpolarization is attributed to the optically
induced cross relaxation (cross-polarization) of the NV centers in 𝑚𝑁𝑉

𝑠 = 0 with the P1 center at certain
magnetic field values.

This section is based on the work [44]. The experimental procedure already explained in chapter 3 is based on
optically initializing the NV centers to 𝑚𝑁𝑉

𝑠 = 0 by laser irradiation and applying a set of magnetic fields in the
Z direction (considered to be parallel to one of the four equivalent [111] NV center orientations), the values of
this magnetic field are chosen to be in the range of 48 and 54 mT.

It is necessary to describe the quantum mechanical model used to perform the cross polarization simulations.
This is composed by two independent subsystems which are described by the following two Hamiltonian
operators:

𝐻𝑁𝑉 = 𝐷 (𝑆𝑁𝑉𝑧 )2 + 𝛾𝐵̄.𝑆𝑁𝑉 + 13𝐶A𝑆𝑁𝑉 .𝐼13𝐶

𝐻𝑃1
𝑂,𝑁𝑂 = 𝛾𝐵̄.𝑆𝑃1 + 𝐴𝑂,𝑁𝑂𝑆𝑃1.𝐼𝑁

(6.1)

Z axis. The first term in 𝐻𝑁𝑉 corresponds to the zero-field splitting term of the 𝑁𝑉 center in its ground state
𝑚𝑠 = 0 at room temperature , the parameter D denotes the ZFS parameter for the ground state D=2870 MHz .
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The second term represents the Zeeman interaction of the NV center due to 𝐵̄, the constant 𝛾=28.03 MHz/mT
is the gyromagnetic value for the electron. The third term represents the isotropic fine interaction between the
NV electron spin 𝑆𝑁𝑉 and the neighboring nuclear spin 𝐼13𝐶 with an Hyperfine constant 13𝐶A= 2 MHz .

Considering the tetrahedral structure of the lattice, the P1 Hamiltonian subsystem is also divided into two
subsystems according to the P1 centers aligned (O) with the Z axis and the P1 centers not aligned (NO) forming
an angle 𝜙=109◦ with the NV center , the non aligned and aligned P1 centers exist in a relative abundance of
(1:3). Their respective Hyperfine coupling tensors ,in MHz units, for the aligned and non-aligned P1 centers
are given respectively by 𝐴𝑂 and 𝐴𝑁𝑂 .

𝐴𝑂 =
©­«
81 0 0
0 81 0
0 0 114

ª®¬ 𝐴𝑁𝑂 =
©­«
100 0 10
0 81 0

10 0 85

ª®¬
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Figure 6.1: Energy diagram of the composite system 6.1 for a magnetic field range B(mT)=(0,60)
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Figure 6.2: Amplified energy diagram of the composite system on the magnetic field range B(mT)=(48,54).
The arrows represent roughly the magnetic field values at which the cross polarization can occur
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Figure 6.3: Energy matching conditions as a function of the magnetic fields
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The energy eigenvalues and eigenvectors are obtained by solving numerically the eigenvalue problem for each
Hamiltonian that compose the system, the energy diagram is represented in the figure 6.1.

In the energy diagram figure 6.2 the location of the vertical arrows indicate the magnetic field values where
the energy matching condition necessary for the cross-relaxation to happen. Precisely, where the energy differ-
ence between the corresponding states

��𝑚𝑃1
𝑠 = +1/2

〉
and

��𝑚𝑃1
𝑠 = −1/2

〉
coincides with the energy difference

between
��𝑚𝑁𝑉

𝑠 = 0
〉

and
��𝑚𝑁𝑉

𝑠 = −1
〉

within an energy threshold 𝛿𝐸 = ±0.5 MHz. Where the energy matching
conditions are met, the expectation value of 𝐼13𝐶

𝑧 of the subsystem 𝐻𝑁𝑉 eigenfunctions is appended in a list to
determine the spin polarization 6.3

The polarization signals in the simulations were obtained via the convolution of the polarization with a Gaussian
function with a full width at half maximum of 0.15 mT.

The experimental results were presented in chapter 4 4.11 scaled to compare it with the simulation plot. In the
figure 6.4, the simulation assumes that the applied magnetic field 𝐵̄ is parallel to the Z axis as it was prepared
in the experiment. Nevertheless, a better fitting between the results and the simulation 6.5 takes place when
the simulation is performed considering a 𝜃 = 4◦ between the 𝐵̄ and the NV axis. This can be attributed to
issues related to the experimental set up shuttling process that prevented the sample to be aligned with respect
the applied magnetic field 𝐵̄.

On the other hand, comparing the simulation part of the plots 6.4 and 6.5, the polarization pattern is shifted to
the right, in the case where both orientations were present in the sample, the negative and positive parts of the
polarization pattern could cancel each other.

Approximately, in the region after B=52 mT, the experimental results do not match with the simulation.
This can be attributed to the power instability of the laser that prevents the NV centers ensemble to initially
completely polarize to 𝑚𝑠 = 0.

In the simulation performed only single quantum transitions were considered. Conversely, the so called
forbidden quantum transitions were not considered in the simulation. Regardless, around B=50.5 mT and
B=52.0 mT two small peaks are observed and could be related to the forbidden transitions if compared to [44]
figure 3.
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Figure 6.4: Simulation and experimental result comparison for 𝜃=0◦
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Figure 6.5: Simulation and experimental result comparison for 𝜃=4◦
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6.2 Landau Zener induced transitions via magnetic field sweeps

In this subsection the dynamics of the NV–P1–13C system is studied when the magnetic field sweeps are
superposed to a static magnetic field 𝐵 in principle oriented along the Z axis, as described in the experimental
methods chapter of this master thesis 3, the dynamics can be explained with the Landau-Zener theory . The
reference [45] is the main source in which this section is based.

First, in contrast to the Cross polarization case, the Hamiltonian system is not subdivided by two independent
Hamiltonian terms but one total Hamiltonian with dipolar coupling terms between NV and P1 as well as
between 13C and NV. These last are the perturbation terms mentioned in chapter 5 that make possible the cross
polarization of NV and P1 centers which leads to the dynamical polarization of 13C nuclei.

𝐻
𝑃1,𝑁𝑉
𝑑𝑖𝑝

=
𝜇0𝛾𝛾ℏ𝜋
𝑟3

1

(
𝑆𝑁𝑉 .𝑆𝑃1 − 3(𝑆𝑁𝑉 .𝑟1) (𝑆𝑃1.𝑟1)

)
(6.2)

𝐻
13𝐶,𝑁𝑉
𝑑𝑖𝑝

=
𝜇0𝛾13𝐶𝛾ℏ𝜋

𝑟3
2

(
𝑆𝑁𝑉 .𝐼13𝐶 − 3(𝑆𝑁𝑉 .𝑟2) (𝐼13𝐶 .𝑟2)

)
(6.3)

In the dipolar interaction terms, r1 and r2 are the modules of the vectors r1 and r2 that connect the already
indicated spins, the respective unitary vectors are denoted by r̂1 and r̂2.

x

y

z

NV

P1

13C

B

Figure 6.6: Scheme of the three spin system axes on the XZ plane, the magnetic field in this case is aligned in
the Z axis

It is assumed that the the three spin system is collinear and its main axis lay on the X − Z plane, similar to [46].
The three spin system can lay in any plane that includes the Z axis since that is the direction of the magnetic field.

The dipolar coupling Hamiltonian terms are defined by the dipolar coupling parameters outside the paren-
theses in 6.2 and 6.3 which are function of the distance modules that connect the spins.
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𝐻
𝑃1,𝑁𝑉
𝑑𝑖𝑝

= 𝐶𝑁𝑉−𝑃1

(
𝑆𝑁𝑉 .𝑆𝑃1 − 3(𝑆𝑁𝑉 .𝑟1) (𝑆𝑃1.𝑟1)

)
(6.4)

𝐻
13𝐶,𝑁𝑉
𝑑𝑖𝑝

= 𝐶𝑁𝑉−13𝐶

(
𝑆𝑁𝑉 .𝐼13𝐶 − 3(𝑆𝑁𝑉 .𝑟2) (𝐼13𝐶 .𝑟2)

)
(6.5)

In this master thesis, the value used for the coupling parameter between 13C and NV center is CNV−13C =0.92
MHz, this had been take it from the main reference [45].

NV-P1 dipole interaction coupling parameters estimation
The average distance between the P1 and NV centers can be estimated from the concentration values of the
P1+NV centers calculated from the EPR CW-pulse experiments performed. This information is showed in the
table 3.1
Two different approaches were tried to make an estimation of the coupling constant values between NV and
P1 centers 𝐶𝑁𝑉−𝑃1. The first approach is going to be called Method I, which is based on obtaining the average
distance between the defects from the concentration values (NV+P1) , the unit cell volume of the diamond
lattice and the number of atoms per unit cell.

Distance(nm) =
(
𝑎3𝑐𝑢

𝐶𝑃1

)1/3

(6.6)

In the expression 6.6 : The parameter 𝐶𝑃1 is the concentration of P1 centers , the parameter (a) is the lattice
constant of diamond and 𝑐𝑢 is the number of carbon atoms per unit cell.

𝐶𝑃1 =
𝐶𝑃1(ppm)

106 𝑎 = 0.3567 nm 𝑐𝑢 = 8

From the estimated distance the coupling constant is calculated. The values obtained are depicted in the table
below.

sample id distance (nm) CNV−P1 (MHz)
280 16 0.08
277 19 0.05
276 17 0.06
275 18 0.05
274 17 0.06
273 18 0.05
291 22 0.03

Table 6.1: Average defect distance and their coupling strength parameters between NV-P1 defects calculated
with the method I
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Figure 6.7: Method I: Dipolar coupling constant as a function of the average defect distance

The second approach is executed by applying a function 1 that calculate the average inter particle distance
between NV and P1 centers from the Poisson distribution 𝑃(𝑟) = exp

(
−4𝜋𝑁𝑐𝑟3

𝑖 𝑗
/3
)

where 𝑟𝑖 𝑗 is the inter
particle distance between particle 𝑖 and 𝑗 and 𝑁𝑐 concentration in cm−3 [47], from this method the average
inter particle distance from the concentration of P1 is given by

Distance(nm) =
(
3M ln(0.5)1021

4𝜋Na𝜌𝐶𝐶𝑃1

)1/3

(6.7)

In the expression 6.7 :The parameter M is the mass of carbon in atomic units, the parameter 𝐶𝑃1 is the
concentration of P1 centers , the parameter NA is the Avogadro’s number and 𝜌𝐶 is the density of carbon in the
form of diamond.

M = 12.011amu 𝐶𝑃1 =
𝐶𝑃1(ppm)

106 NA = 6.022 141 29 × 1023 mol−1 𝜌𝐶 = 3.51 g cm−3

1This function was provided by Johannes Engel in a python script form
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sample id distance (nm) CNV−P1 (MHz)
280 4.7 3.1
277 5.6 1.9
276 5.1 2.4
275 5.4 2.0
274 5.3 2.2
273 5.4 2.0
291 6.6 1.1

Table 6.2: Average defect distance and their coupling strength parameters between NV-P1 defects calculated
with the method II
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Figure 6.8: Method II: Dipolar coupling constant as a function of the expected defect distance

Two coupling constants CNV−P1 obtained by each method were used in the simulations in order to compare
which method gives a value of CNV−P1 such that the dynamic nuclear polarization is more effective while
CNV−13C is kept at the value 0.92 MHz

In this work, it is not considered the Hyperfine coupling between P1 electron spin and its intrinsic 14N nuclear
spin neither between NV electron spin with 14N nuclear spin. The reason for this is to preserve the simplicity of
energy eigenvalues diagram since including those terms makes the energy diagram more complex and the simu-
lation time also becomes longer. Moreover, the inclusion of these terms do not impact the system dynamics [45]

The Hamiltonian model that describes the NV–P1–13C three-spin system for the static magnetic field 𝐵 is
denoted as 𝐻0 :

𝐻0 = 𝐻𝑁𝑉
𝑍𝐹𝑆 + 𝐻

13𝐶,𝑁𝑉
𝑑𝑖𝑝

+ 𝐻𝑃1,𝑁𝑉
𝑑𝑖𝑝

+ 𝐻𝑁𝑉
𝑍 + 𝐻𝑃1

𝑍 + 𝐻13𝐶
𝑍 (6.8)

Where the term 𝐻𝑁𝑉
𝑍𝐹𝑆

is the zero field splitting Hamiltonian term and 𝐻𝑍 are Zeeman Hamiltonian terms for
each spin. The Hamiltonian used is the one founded in the supplemental information in [48]
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𝐻0 = 𝐷 (𝑆𝑁𝑉𝑧 )2 − 𝛾𝐵̄.𝑆𝑁𝑉 − 𝛾𝐵̄.𝑆𝑃1 − 𝛾13𝐶 𝐵̄.𝐼
13𝐶 + 𝐶𝑁𝑉−𝑃1

(
𝑆𝑁𝑉 .𝑆𝑃1 − 3(𝑆𝑁𝑉 .𝑟1) (𝑆𝑃1.𝑟1)

)
+ 𝐶𝑁𝑉−13𝐶

(
𝑆𝑁𝑉 .𝐼13𝐶 − 3(𝑆𝑁𝑉 .𝑟2) (𝐼13𝐶 .𝑟2)

) (6.9)
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Figure 6.9: Calculated energies eigenvalues as a function of the applied magnetic field along the Z axis. The
shaded region is the avoided crossing region

The figure 6.9 presents the energy diagram as a function of the magnetic field, the shaded region is the avoided
crossing region where the states |0, 1/2, ↓⟩ and |−1,−1/2, ↑⟩ nearly degenerate therefore the polarization transfer
can take place.

The Hamiltonian that simulates the dynamic nuclear polarization via magnetic field sweeps is a modification
of the Hamiltonian 𝐻0 to a time dependent Hamiltonian 𝐻 by introducing the magnetic field sweep rate 𝑅𝑠
which, as seen in the toy example of chapter 5, is a key parameter that determine whether or not the diabatic
transitions will take place. Similarly as in [49], the Hamiltonian can be expressed as follows, similar to how it
is written in [49]

𝐻 = 𝐻0 + 𝐻𝑍 (𝑡)𝐻0 + 𝑅𝑠
(
𝛾𝑆𝑁𝑉𝑧 + 𝛾𝑆𝑃1

𝑧 + 𝛾13𝐶𝑆
13𝐶
𝑧

)
(6.10)

The system is considered closed since the interaction with the environment is not contemplated, therefore
the evolution of the states Ψ and the eigenvalues are governed by the Schrö dinger equation which is solved
numerically with the The Lindblad Master Equation Solver function (mesolve) from the python module QUTIP.
Mesolve function.

𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐻̂Ψ (6.11)

59



The following diagrams depicts the energy eigenvalues for the Hamiltonian H0 near the avoided crossing region
of one of the simulations performed, the purpose of this diagram is to introduce a relevant concept called energy
gaps Δ1 and Δ0.

Δ0Ψ0

Δ1 Δ1

Figure 6.10: Energy diagram around the avoided crossing region , the energy gaps Δ1 and Δ0 are depicted in
the figure. Generally, Δ0>Δ1. The initial state Ψ0 is also located in the figure

For all the Landau-Zener simulations performed in this master thesis , at the time t = 0, 100% of the NV
centers are polarized in the 𝑚𝑁𝑉 = 0. Accordingly, the chosen initial state is Ψ0=|0, 1/2, ↓⟩, where 𝑚𝑁𝑉 = 0,
𝑚𝑃1 = 1/2 and 𝑚13𝐶 = −1/2 represented by a down oriented arrow ↓.

The simulations are performed for a range of parameters Rs and magnetic field sweep range fixed for all
simulations as 𝛿𝐵 = 0.5 mT with magnetic field initial and final values of BI = 51 mT and Bf = 51.5 mT.

An estimation of which order of magnitude the energy gaps Δ1 and Δ0,indicated in the energy diagram
6.10, should have in order to optimize the Landau Zener dynamics can be useful. These gaps are defined by the
values of the coupling strength parameters between CNV−P1 and C13C−NV. According to the simulations here
performed, the energy gaps Δ1 and Δ0 must lay in a restrictive range of values of maximum some tens of kHz
when the sweep fields velocities take values in the range of those employed in the experiments: Between 100
mT/s and 2000 mT/s. A more accurate calculation is done with the Hamiltonian matrix representation of 𝐻0
in [48] supplemental information.

In 5 considering expressions 5.12 and 5.13 and figure 5.2 it is clear that the varying parameter parameter
q is the magnetic field 𝐵̄ in our case, the parameters that determine the non-adiabatic (also known as diabatic)
probability of crossing the gap Δ1 is :

𝑃1 = exp

{
−𝜋

2
×

Δ2
1

(2|𝛾 | + 𝛾13𝑐)𝑅𝑠

}
(6.12)

The parameter Rs is the slope of the magnetic field sweeps. From this last expression, we can see that the
interplay between Δ1 and Rs are determinant parameters for the Landau Zener transitions to take place or not.
Nevertheless, 6.12 alone does not model the polarization transfer, but also the probability of non adiabatic
crossing the gap Δ0 according to [45] is taken into consideration.
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To decide a range in which the values of CNV−P1 are the best to induce the non-adiabatic Landau Zener
transitions, we present four simulations for four different CNV−P1 values, two from the tables 6.1 and 6.2, and
two intermediate values.

Before performing the simulations, it is noticeable that the CNV−P1 from 6.2 are to big and therefore the
transitions are most likely to be adiabatic. For the case of CNV−P1 =1.1 MHz, considering that C13C−NV = 0.92
MHz, the diagram that corresponds to the energy eigenvalues obtained from the Hamiltonian H0 is depicted
below

Δ0

Δ1

Ψ0

Figure 6.11: Energy eigenvalues of the static Hamiltonian, with dipolar couplings CNV−13C=0.92 MHz and
CNV−P1= 1 MHz, as a function of the magnetic fields around the avoided crossing. The color map bar indicates
the expectation values of Iz correspondent to 13C

Graphically, we can see that the energy gap Δ1 is multiple times bigger than required, this feature makes the
transition probability 𝑃1 → 0. Therefore the evolution of the expectation values of Iz is dominantly adiabatic
as showed in 6.14, 6.15 and 6.16 for all the sweep magnetic field rates Rs included in the simulations.

For the rest of simulations with the other three different values for CNV−P1, only the energy diagram color
coded with respect to Iz of 13C and the evolution of Iz with respect the magnetic field will be presented in this
document because of text compilation difficulties.
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Figure 6.12: Energy eigenvalues of the static Hamiltonian, with dipolar couplings CNV−13C=0.92 MHz and
CNV−P1= 1 MHz, as a function of the magnetic fields around the avoided crossing. The color map bar

indicates the expectation values of Sz correspondent to NV
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Figure 6.13: Energy eigenvalues of the static Hamiltonian, with dipolar couplings CNV−13C=0.92 MHz and
CNV−P1= 1 MHz, as a function of the magnetic fields around the avoided crossing. The color map bar

indicates the expectation values of Sz correspondent to P1
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Figure 6.14: 13C: Evolution of the expectation values of Iz for different magnetic field sweep rates Rs,
magnetic field range 𝛿B= 0.5 mT, coupling constants CNV−13C=0.92 MHz and CNV−P1=1 MHz, initial state

Ψ0= |0, 1/2, ↓⟩, the figure shows one period of the magnetic field sweep.
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Figure 6.15: NV: Evolution of the expectation values of Sz for different magnetic field sweep rates Rs,
magnetic field range 𝛿B= 0.5 mT, coupling constants CNV−13C=0.92 MHz and CNV−P1= 1 MHz, initial state

Ψ0= |0, 1/2, ↓⟩, the figure shows one period of the magnetic field sweep.
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Figure 6.16: P1: Evolution in time of the expectation values of Sz for different magnetic field sweep rates Rs,
magnetic field range 𝛿B= 0.5 mT, coupling constants CNV−13C=0.92 MHz and CNV−P1= 1 MHz, initial state

Ψ0= |0, 1/2, ↓⟩, the figure shows one period of the magnetic field sweep.
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The second simulation case corresponds to CNV−P1= 0.5 MHz, it is noticeable that the energy gaps are smaller
than in the case of CNV−P1= 1 MHz, therefore it is expected a more efficient polarization of 13C due to higher
non-adiabatic transitions probability. The evolution of Iz showed in 6.18 suggests that the values of Rs that
induce the Landau-Zener transition lay between 1000 mT/s and 1600 mT/s, values above or below this range
are too fast or too slow to attain dominant Landau-Zener transitions.
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Figure 6.17: Energy eigenvalues of the static Hamiltonian, with dipolar couplings CNV−13C=0.92 MHz and
CNV−P1= 0.5 MHz, as a function of the magnetic fields around the avoided crossing. The color map bar
indicates the expectation values of Iz correspondent to 13C

The third simulation case corresponds to CNV−P1= 0.16 MHz. In 6.19 the energy gaps are smaller than in the
previous cases of CNV−P1, consequently it is still expected that the system exhibits dominant Landau-Zener
transitions for certain values of Rs. The evolution of Iz showed in 6.21 shows that the values of Rs that induce
the Landau-Zener transitions, in this case, are between 200 and 600 mT/s, values above this range are too fast
to attain dominant Landau-Zener transitions.

The last simulation case corresponds to CNV−P1= 0.08 MHz. In 6.20, the energy gaps are are smaller than in the
other three cases of CNV−P1. In addition, in the energy diagram it is visible that Δ0 is much smaller that in the
previous case. Considering the crude polarization transfer dynamics model proposed in [45], Δ0 → 0 affects
negatively the polarization efficiency. The evolution of Iz showed in 6.22 shows that there are no values of Rs
which can optimally polarize the 13C, compared to the previous cases. Nevertheless, Rs= 100 mT/s exhibits
some degree of polarization.

From the results showed, the values of CNV−P1 that better accomplish 13C polarization by induced Landau
Zener transitions are CNV−P1= 0.5 MHz, and CNV−P1= 0.16 MHz. According to 6.2, these coupling parameters
correspond to an average defect distance of 12 nm and 8 nm respectively. In practice, in the whole sample
the coupling parameters can not be described by a unique average value for CNV−P1 and C13C−NV, the defects
interact with different coupling strengths which leads to a range of values for the energy gaps Δ0 and Δ1 that
influence the transitions degree of adiabaticity.
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Figure 6.18: 13C: Evolution of the expectation values of Iz for different magnetic field sweep rates Rs,
magnetic field range 𝛿B= 0.5 mT, coupling constants CNV−13C=0.92 MHz and CNV−P1=0.5 MHz, initial state

Ψ0= |0, 1/2, ↓⟩, the figure shows one period of the magnetic field sweep.

67



51.153 51.254
B(mT)

715

716

717

718

719

720

Ei
ge

ne
ne

rg
ie

s 
(M

H
z)

13C

0.4

0.2

0.0

0.2

0.4

m
z

Figure 6.19: Energy eigenvalues of the static Hamiltonian, with dipolar couplings CNV−13C=0.92 MHz and
CNV−P1= 0.16 MHz, as a function of the magnetic fields around the avoided crossing. The color map bar
indicates the expectation values of Iz correspondent to 13C
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Figure 6.20: Energy eigenvalues of the static Hamiltonian, with dipolar couplings CNV−13C= 0.92 MHz and
CNV−P1= 0.08 MHz, as a function of the magnetic fields around the avoided crossing. The color map bar
indicates the expectation values of Iz correspondent to 13C
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Figure 6.21: 13C: Evolution of the expectation values of Iz for different magnetic field sweep rates Rs,
magnetic field range 𝛿B= 0.5 mT, coupling constants CNV−13C=0.92 MHz and CNV−P1=0.16 MHz, initial state

Ψ0= |0, 1/2, ↓⟩, the figure shows one period of the magnetic field sweep.
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Figure 6.22: 13C: Evolution of the expectation values of Iz for different magnetic field sweep rates Rs,
magnetic field range 𝛿B= 0.5 mT, coupling constants CNV−13C= 0.92 MHz and CNV−P1= 0.08 MHz, initial

state Ψ0= |0, 1/2, ↓⟩, the figure shows one period of the magnetic field sweep.
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Chapter 7

Conclusions

During this master thesis, it is worth to remark the challenges present in the process of enhancing NMR signals.
The Dynamic Hyperpolarization methods to enhance the NMR signals showed in this master thesis gives
advantages in some important aspects because it makes use of the NV center optical polarization property
which makes possible the polarization of 13C in diamond by transferring the polarization of the NV centers to
the 13C nuclei at room temperature and magnetic fields in the order of millitesla.

Nevertheless, experimental difficulties that were partially not overcame were present during the experimental
procedures ( e.g sample heating, shuttling system that leads to misalignment of the sample respect to the
magnetic fields generated by the Helmholtz-like coil pairs, decrease in the laser power ) . In addition, in the
case of this work the samples were far from ideal, the concentration of the NV centers measured with CW-EPR
experiments showed to be too low, or even not possible to detect in the case of the sample id280 and id277.

On the other hand, a set of measurements that employed static magnetic fields to induce Cross polariza-
tion were used to be compared with the simulations performed, giving partially accurate results between the
range of 49 mT and 52 mT.

Some calculations regarding the dynamic nuclear polarization by superposing time dependent magnetic field
values to static ones were helpful to understand the Landau Zener theory that theoretically explains this tech-
nique . It was also useful to gain insight of how important is to chose adequate parameters on the experiments
such as the magnetic field sweep rates, static magnetic fields and also the importance of the inter-defect dis-
tance parameter that defines the Hyperfine dipolar coupling parameters which make possible the Landau Zener
transitions to happen.
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