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Experimental Physics EP2 
Thermodynamics

– Kinetic theory of gases –
Gas pressure
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Gas pressure
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Force acting upon the wall in the first part of collision:
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Gas pressure
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Force acting upon the wall in 
the second part of collision:
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Molecular speeds in gases
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Components in 
Dry Air

Volume Ratio 
compared to Dry 
Air

Molecular Mass  
M (kg/kmol)

Molecular 
Mass in Air

Oxygen 0.2095 32.00 6.704

Nitrogen 0.7809 28.02 21.88

Carbon Dioxide 0.0003 44.01 0.013

Hydrogen 0.0000005 2.02 0

Argon 0.00933 39.94 0.373

Neon 0.000018 20.18 0

Helium 0.000005 4.00 0

Krypton 0.000001 83.8 0

Xenon 0.09 10-6 131.29 0

Total Molecular Mass of Air 28.97

~ 480 m/s

T = 300 K

~ 1930 m/s

~ 238 m/s
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Ø Molecules in gases have relatively high speeds.

Ø Pressure of the gas is due to molecular collisions.

Ø In revealing the kinetic origin of pressure, 

it is worse remembering not only the 

role of momentum transfer, but also 

number of collision per unit time.

Ø The joint effect makes the pressure

being proportional to the average

kinetic energy of the molecules.

To remember!
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Experimental Physics EP2 
Thermodynamics

– Kinetic theory of gases –
Kinetic interpretation of temperature

https://bloch.physgeo.uni-leipzig.de/amr/
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Kinetic interpretation of temperature
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We cannot use the ideal gas law because we 
intend to derive it from the microscopic principles!
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Mechanical equilibrium:
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However, the condition above is not sufficient. The temperatures as well must be 
identical to provide equilibrium! Otherwise, the process of temperature equilibration 
will result in changing pressures, therefore in piston movement.
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M1m 2m

Kinetic interpretation of temperature
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Kinetic interpretation of temperature
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Kinetic interpretation of temperature

M1m 2m

2
2

22
1

1

22
vmvm

= totalkEPV ,3
2

=kE3
2

=Q

Q= NPVkinetic or energetic temperature

Temperature can be defined as any monotonic function of the kinetic temperature. 
The introduction of a special unit T, which is measured in degrees of Celsius or K, is 
mostly due to historical reasons: 

kT=Q thermodynamic temperature
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The equipartition theorem
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In thermodynamic equilibrium there is an average energy of kT/2 
per molecule (or per object) associated with each degree of freedom.
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The equipartion theorem is valid for any degree of freedom.
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Energy of polyatomic molecules
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Ø Based solely on molecular kinetics in gases

we were able to show that the average kinetic energy 

of molecules obeys the properties stated for 

temperature in the zeroth law of thermodynamics.

Ø This allows us to introduce kinetic temperature.

Ø Kinetic and thermodynamic temperatures

simply related to each other via Q = kT.

Ø In thermodynamic equilibrium there 

is kinetic energy kT/2 associated with 

each degree of freedom.

To remember!
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Experimental Physics EP2 
Thermodynamics

– Kinetic theory of gases –
Maxwell and Boltzmann distributions

https://bloch.physgeo.uni-leipzig.de/amr/
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The Maxwell distribution of velocities
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The Maxwell distribution of velocities
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Components in 
Dry Air

Volume Ratio 
compared to 
Dry Air

Molecular 
Mass  M 
(kg/kmol)

Molecular 
Mass in 
Air

Oxygen 0.2095 32.00 6.704

Nitrogen 0.7809 28.02 21.88

Hydrogen 0.0000005 2.02 0

Xenon 0.09 10-6 131.29 0

Total Molecular Mass of Air 28.97

Distributions for air components
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The Maxwell distribution of speeds
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Boltzmann distribution
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At equilibrium, each elementary process should be equilibrated by its reverse process.

A
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Boltzmann distribution: detailed balance

Two ensembles with
equal total energies:
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Avogadro’s number

Jean Baptiste Perrin
3 2 0 3 2 2 5 3 1 2 

3 1 1 0 3 3 4 3 4 4 

0 3 1 3 1 4 2 2 1 3 

1 1 2 2 3 0 1 3 4 3 

0 2 2 1 0 2 1 3 2 4 

2 1 0 0 1 1 3 1 0 0 

0 2 0 0 0 0 1 2 2 0 

2 1 3 3 1 0 0 0 3 0 

1 0 2 1 0 0 1 0 1 0 

1 1 0 2 4 1 0 1 0 1 

Some thousands of readings
are required if some degree of
accuracy is aimed at. To take
an example, I have copied
below the numbers given by 50
consecutive readings at two
levels 30 μ apart in one of the
emulsions I have used:

Lower end Upper end

Annales de Chimie et de Physique 18, 1-114 (1909) 

30 µm

The gamboge, which is used for a water-
colour, comes from the desiccation of the 
latex secreted by Garcinia morella (guttier of 
Indo-China). 

R = 0.212 µm
rc = 1.207 g/cm3

rl = 1.0 g/cm3

T = 20°C 
n1/n2 = 2.08
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The mean radius of the granules of the emulsion employed was found equal to 0.212 μm, by counting 11,000
granules of a titrated emulsion, and to 0.213 μm by application of the law of Stokes. The difference of density
between the material of the granules and the inter-granular water was 0.2067 at 20°, the temperature to which
the measurements refer.

J/K1013.1 23-´=
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Ø The Maxwell velocity distribution gives the fraction 

of molecules having certain velocities.

Ø There are distributions for velocity components,

for velocities and for molecular speeds.

Ø Due to occurrence of such distributions,

one may introduce different average 

quantities.

ØThe Boltzmann distribution describes

variation of particle densities in an external

conservative potential field.

To remember!
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Experimental Physics EP2 
Thermodynamics

– Kinetic theory of gases –
Collisions

https://bloch.physgeo.uni-leipzig.de/amr/
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Collision frequency
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Collision frequency
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Reservoir with a hole

T

V

S

zSdtdN -=

SdtvndN
4
1

-=

dt
V
Sv

n
dn

4
1

-=

t
t

enn
-

= 0 Sv
V4

=t

0v 0n

Conservation of particle number: vnvn 4
1

00 =

Conservation of energy: ®
=× kEmvvn 2

02
1

00

pm
kTnEk

3)(2
=

®

The average kinetic energy 
of a particle escaping a small 
hole in the reservoir

3

16
1 vnmEk p=

®

kT2=e

0
2 vv
p

= p80nn =
k

mvT
4

2
0=



Experimental Physics 4a - Molecular-kinetic theory of gases 27

Molecular collisions
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Crooks radiometer

Thermal creep

Momentum conservation in stationary state:

Very low pressures (~P)

Higher, but still low pressures (~1/P)
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Ø The Boltzmann distribution describes variation of 

particle densities in external potential fields.

Ø The Boltzmann and Maxwell distributions are

intimately related and follow from each other.

Ø Molecular collisions play important

role in establishing distribution of

molecular velocities.

Ø Viscosity is related to momentum transfer, 

heat conduction – energy transfer, 

diffusion – mass transfer.

To remember!
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Experimental Physics EP2 
Thermodynamics

– Kinetic theory of gases –
Diffusion

https://bloch.physgeo.uni-leipzig.de/amr/
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Self-diffusion
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Viscosity and heat conduction
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Experimental Physics 2 - Concept of atoms
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Diffusion flux under concentration gradient

A. Fick, Über Diffusion. Ann. Phys. Chem., 1855, 94, 59
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The diffusion equation
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Solution of the diffusion equation
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Central limit theorem:
The sum of many independent random 
variables has a probability distribution that 
converges to Gaussian.
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Diffusion under equilibrium conditions
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A. Einstein, Ann. Phys., 1905, 17, 54
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Ø The linear response thery  - a concentration 

gradient results in a flux proportional to the gradient.

Ø The proprtionality coefficient is called “diffusivity”.

Ø Combined with the mass conservation law it results 

in the differential diffusion equation.

Ø The random walk model can be analyzed 

to obtain mean-square-displacements.

Ø The m.s.d. grow linearly with time with 

the proportionality coefficient  the same

diffusivity as in the diffusion equation.

To remember!


