
R U S T E M VA L I U L L I N

E X P E R I M E N TA L P H Y S I C S
S C R I P T S

F E L I X B L O C H I N S T I T U T E F O R S O L I D S TAT E P H Y S I C S , A P -
P L I E D M A G N E T I C R E S O N A N C E



Copyright © 2023 Rustem Valiullin

published by felix bloch institute for solid state physics, applied magnetic resonance

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “as is” basis, without warranties or conditions of any kind, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0


Contents

1 Kinematics 5
1.1 Motion along a line . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Constant velocity . . . . . . . . . . . . . . . . . . . 5

1.1.2 Varying velocity . . . . . . . . . . . . . . . . . . . 6

1.1.3 Constant acceleration . . . . . . . . . . . . . . . . 7

1.1.4 Complex motion . . . . . . . . . . . . . . . . . . . 7

1.1.5 Constant acceleration kinematic equations . . . . 7

1.1.6 Kinematic equations from calculus . . . . . . . . . 10

1.1.7 List of experiments . . . . . . . . . . . . . . . . . . 10

1.2 Scalars and vectors . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Scalars and vectors . . . . . . . . . . . . . . . . . . 11

1.2.2 Vector components . . . . . . . . . . . . . . . . . . 11

1.2.3 Scalar and vector products . . . . . . . . . . . . . 11

1.2.4 List of experiments . . . . . . . . . . . . . . . . . . 11

1.3 Motion in 2D and 3D . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Average and instantaneous velocities . . . . . . . 12

1.3.2 Average and instantaneous accelerations . . . . . 13

1.3.3 Equations of motion in vector form . . . . . . . . 13

1.3.4 Circular motion in component form . . . . . . . . 15

2 The laws of motion 17
2.1 The Newton’s laws . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Newton’s first law . . . . . . . . . . . . . . . . . . 17

2.1.2 Newton’s second law . . . . . . . . . . . . . . . . 19

2.1.3 Newton’s third law . . . . . . . . . . . . . . . . . . 19

2.1.4 Selected problems . . . . . . . . . . . . . . . . . . 19

2.1.5 Frictional forces . . . . . . . . . . . . . . . . . . . . 22

2.1.6 Capstan equation . . . . . . . . . . . . . . . . . . . 23

2.1.7 Drag forces . . . . . . . . . . . . . . . . . . . . . . 24

2.1.8 Inertial forces . . . . . . . . . . . . . . . . . . . . . 25

Bibliography 31

Index 33





1 Kinematics

This chapter covers basics of kinematics. It introduces the concepts
of motion without relating to physical mechanisms causing it. An-
other simplification is that only particles are considered, i.e. motion
of point-like objects are considered. This point may be associated
with the center-of-mass of a bigger object. In this way, any position of
an object may easily be characterized by its coordinates.

Three fundamental concepts of kinematics are displacement, veloc-
ity, and acceleration.

1.1 Motion along a line

In this lecture we make one more simplification and consider
only one-dimensional motion along a straight line. Thus, we will not
need the concept of vectors, which will be introduced in one of the
succeeding lectures. Nonetheless, we still need to distinguish two
possible directions one may move along a line, let say to the right and
to the left.

By selecting an appropriate coordinate system, we may fix the
origin, initial and current positions, and positive and negative direc-
tions.

Figure 1.1: Coordinate system
1.1.1 Constant velocity

Let us first consider the simplest constant-velocity case. Let us select
arbitrarily a position x(t) at a time instant t. Given a time interval ∆t
to move, the final position will be x(t + ∆t). The displacement ∆x
during ∆t is x(t + ∆t)− x(t). By definition, the average velocity v̄ in v̄: By the over-bar symbol we typically

denote the time average, if not stated
otherwise.

the time interval ∆t is

v̄ =
∆x
∆t

=
x(t + ∆t)− x(t)

∆t
(1.1)

For the constant-velocity case, v̄ is irrespective of the choice of ∆t
or time t and the bar symbol may be omitted.
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• E X P E R I M E N T:
Demonstration of the independency of v on ∆x

evaluation:

1.1.2 Varying velocity

If velocity is not constant, the average velocity becomes a function
of both t and ∆t. In this case, a useful concept is an instantaneous
velocity, which is obtained by taking the limit of ∆t → 0:

Figure 1.2: Constant-velocity motion

v(t) = lim
∆t→0

∆x
∆t

=
dx
dt

≡ ẋ (1.2)

It turns out that in the limit of small ∆t, ẋ approaches a constant
value, which is not a function of ∆t anymore, but t only. This value
we call instantaneous velocity. If velocity is changing along a trajec-
tory, then, quite generally, v ̸= v.

• E X P E R I M E N T:
Demonstration of the dependency of v on ∆x

evaluation:

• E X A M P L E 1 . 1 . 1 :
Calculate v and v for the displacement graph shown in Fig. 1.3.

solution:
Let us denote the time when the velocity changes from v1 to v2 by t1.
On the time interval t ≤ t1 v = v. For t > t1 we need to perform
simple arithmetic average with the weights t1/t and (t − t1)/t:

v(t > t1) =
t1

t
v1 +

t − t1

t
v2 (1.3)

Figure 1.3: Speeding up

• E X A M P L E 1 . 1 . 2 :
Find v and s for an object moving for 1 h to the right with 60

km/h and then for one 1 h to the left with 40 km/h.

solution:
Here simple arithmetic mean applies: v = 1

2
v1 +

1
2 v2 = 10 km/h,

s = 1
2
s1 +

1
2 s2 = 50 km/h.
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• E X A M P L E 1 . 1 . 3 :
What would be the difference, if now not identical time intervals,
but equidistant separations are considered. The average velocity
v and the average speed s may not coincide. Find v and s for an
object moving from A to B with 60 km/h and back with 40 km/h.

solution:
First, we find times t1 and t2 needed for paths AB and BA:
t1 = L/|v1| = t1/s1 and t2 = L/|v2| = t2/s2. Thus,
v = t1

t1+t2
v1 +

t2
t1+t2

v2, v = 1
t1+t2

(
L

|v1|
v1 +

L
|v2|

v2

)
= 0. The same result

could be obtained easier by noting that v = ∆x/∆t, and the total ∆x
is zero. If we apply the same equation to find s, the result is
1
s = 1

2

(
1
s1
+ 1

s2

)
. This is called harmonic mean. The result is then

s = 48 km/h.

1.1.3 Constant acceleration

Let us now consider not displacement vs. time, but velocity vs. time
coordinates. In analogue with Eq. 1.3 we may introduce a average
acceleration

ā =
∆v
∆t

=
v(t + ∆t)− v(t)

∆t
(1.4)

If velocity varies linearly with time, ā is irrespective of ∆t and t
and is simply equal to a single-valued a = v̇ = ẍ ≡ d2x

dt2 .

Figure 1.4: Constant-acceleration
motion

1.1.4 Complex motion

Rally Paris-Dakar is one of the prominent examples of complex mo-
tion with varying velocity and acceleration. Fig. 1.5 shows an exam-
ple where the first derivative of the car position yields instantaneous
velocities and the second derivative (first derivative of velocity) in-
stantaneous accelerations.

Figure 1.5: An example of complex
motion

• E X P E R I M E N T:
Demonstration showing first and second derivatives of x(t) and
comparing the derived ẍ with the directly measured one.

evaluation:

1.1.5 Constant acceleration kinematic equations

The following set of equations can be used to analyse different situa-
tions with one parameter being unknown:
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- Equation Missing
1 v = v0 + at ∆x
2 x = x0 + v0t + 1

2 at2 v
3 v2 = v2

0 + 2a(x − x0) t
4 x = x0 +

1
2 (v + v0)t a

5 x = x0 + vt − 1
2 at2 v0

Table 1.1: Basic kinematic equations

• E X E R C I S E 1.1. 1:
Derive all equations in Table 1.1

• E X A M P L E 1 . 1 . 4 :
Derivation of the equation in line 2. One may think that if one
replaces v in x = x0 + vt by v = v0+ at on gets the answer, but this
results in x = x0 + v0t + at2. What causes the problem?

solution:
The problem is that v is the instantaneous velocity, but in x = x0 + vt
it has the meaning of the average velocity, i.e. we should write
x = x0 + vt. For the constant-acceleration case we considering,
v = v0 +

1
2 (v(t)− v0) =

1
2 (v + v0). Thus, x = x0 + v0/2 + v(t)/2.

With v(t) = v0 + at one gets the equation in line 2 of Table 1.1.

• E X A M P L E 1 . 1 . 5 :
Derivation of the equation in line 3. A U-Bahn needs most quickly
approach station B which is 2 km apart from station A. The max-
imal acceleration tolerated by the passengers is 2 m/s2. What
would be the maximal speed attained by the U-Bahn?

solution:
Obviously, the train need to move with the maximal acceleration
half-time and maximal deceleration second half. The velocity along
the acceleration path will be v = v0 + at. The path is

x = x0 + v0

(
v−v0

a

)
+ 1

2 a
(

v−v0
a

)2
. By simplifying this equation one

gets the one on line 3. The result at half distance is v = 63.2 m/s,
which is about 227.6 km/h.

• E X P E R I M E N T:
A ball falls down from a height h with zero initial velocity. After
each collisions the speed changes by a factor of a < 1. Find the
total time T that ball will stop bouncing. The coefficient a can be
determined by measuring the speeds before and after collision.
It may also be proven that a is relatively constant for different
speeds.
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evaluation:
Let us consider the problem in small steps just for the instructive
purpose.

• Time t0 to reach the ground is found from 0 = h − gt2
0/2. Thus

t0 =
√

2h/g. Compile a plot h − t2 and determine g

• Just before meeting the ground velocity will be
v1 = −gt0 = −

√
2hg.

• Bouncing upwards will occur with velocity of av1.

• One needs now to establish the coefficient a. To find a one can
either experimentally measure to which height h1 will the ball
jump if it is released from a height h OR this can be done by
directly measuring the velocities before and after collision.

• Time t1u to reach the upper part of the trajectory is found from
0 = av1 − gt1u, i.e. t1u = av1/g.

• The height h1 the ball approaches is

h1 = 0 + av1t1u − 1
2 gt2

1u = 1
2

a2v2
1

g .

• The coefficient is found to be a =
√

h1/h.

• The question is what is time t1d to reach the ground back. Would it
be equal to t1u or different? The fall time t1d is found from

0 = h1 − gt2
1d/2. One finally gets t1d =

√
2h1

g = av1
g . This shows the

symmetry between the rising and falling times. Experiment
proving the equality of fall and rise times.

• Thus, the total time t1 during this bouncing period is t1 = 2av1
g .

• It is easy to see that t2 = 2a2v1
g and tk =

2akv1
g = 2ak

√
2h
g .

• The total time T is found as T = t0 + ∑k=∞
k=1 tk. The sum of

geometric progression ∑k=∞
k=1 ak = ∑k=∞

k=0 ak − 1 = a
1−a . Thus,

T =
√

2h/g + 2a
1−a

√
2h/g =

√
2h/g 1+a

1−a .
The equivalence of the rising and
falling times is a consequence of the
fact that the laws of motion in classical
mechanics exhibit time reversibility, i.e.
the equations are invariant under a
change in the sign of time.

• E X A M P L E 1 . 1 . 6 :
The time reversibility may be seen by considering the same bounc-
ing problem without energy loss.
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solution:
Indeed, the equation describing the upward trajectory (line 2 of
Table 1.1) is h = 0 + v0t − gt2/2. The downward trajectory (line 5 of
Table 1.1) is described by 0 = h − v f t + gt2/2. If we change t → −t in
the last equation and rearrange it, the we arrive to
h = 0 − v f t − gt2/2 which is exactly the same as one for the upward
trajectory.

1.1.6 Kinematic equations from calculus

Figure 1.6: Taking limit ∆x → dx

The total displacement or a complex motion can be found by divid-
ing the path on parts of equidistant intervals in time, ∆ti, and assum-
ing that within this interval of time the object moved with a constant
average velocity vi. Then, the total displacement X = ∑N

i vi∆t. It is
easy see from Fig. 1.6 that shorter is the time interval ∆t (correspond-
ingly larger N), closer it the result to the real displacement. Taking
limit ∆t → dt one finds dx = vdt, where v is now instantaneous
velocity. Summation is now replaced by integration and one gets

∫ X

x0

dx =
∫ t

0
vdt =

∫ t

0
(v0 + at)dt (1.5)

which results in the already famous kinematic equation X − x0 =

v0t + at2/2. Similarly, one may find velocity as

∫ v f

v0

dx =
∫ t

0
adt (1.6)

1.1.7 List of experiments

1. Constant velocity case: v is irrespective ∆x

2. Varying velocity case: v depends on ∆x

3. Complex motion: x, v, a

4. Changing speed upon collision, determining the ratio

5. Proving the h vs. t2 law

6. Proving that rise and fall times are identical

7. Find time for a ball released from h to stop bouncing

1.2 Scalars and vectors

In this lecture we recall the basics of scalars and vectors.
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1.2.1 Scalars and vectors

A scalar quantity is specified by a single value with an appropriate
unit and does not reflect any direction (mass, volume, temperature).
A vector quantity has in contrast both magnitude and direction (ve-
locity, flux, force).

Vectors might be useful in many instances, for example in de-
scribing trajectories as shown in Fig. 1.7. They may be subdivided to
many small sections each captured by a vector. The total displace-
ment then is the vector sum of individual ones.

Figure 1.7: Trajectory

Figure 1.8: Adding two vectors

Vectors can be added as geometrically shown in Fig. 1.8. In this
way a negative vector turns out to be one giving zero upon adding
with the original vector. Summation of vectors complies with the
following laws:

Commutative law a⃗ + b⃗ = b⃗ + a⃗

Associative law (⃗a + b⃗) + c⃗ = a⃗ + (⃗b + c⃗)

Substraction law a⃗ − b⃗ = a⃗ + (−⃗b)
Cartesian coordinate system ia right-
handed coordinate system. The index
finger , the middle finger , and the
thumb now give the alignments of the
x-, y-, and z-axes, respectively.

1.2.2 Vector components

1.2.3 Scalar and vector products

• E X P E R I M E N T:
A piece of mass is first pulled along a table horizontally. After-
wards, it is pulled under certain angle. The work done is found as
a scalar product of the force and displacement.

evaluation:
The constancy of the force may be secured by hanging another mass
on one end of the chord.

• E X P E R I M E N T:
A wire carrying electric current is placed in a magnetic field. The
wire is forced perpendicularly to both magnetic field and current
directions.
evaluation:
Instead of wire one may use an electron beam.

1.2.4 List of experiments

1. Demonstration of scalar product (work)

2. Demonstration of vector product (Lorenz force)
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1.3 Motion in 2D and 3D

In this lecture we extend motion to higher dimensions to con-
sider curvilinear pathes. We us for that the concept of vector intro-
duced in the preceding section.

1.3.1 Average and instantaneous velocities

Figure 1.9: Displacement

Fig. 1.9 shows the initial and final positions of a material point, the
path connecting these two points, and also two radius vectors in an
arbitrarily selected coordinate system describing these points. The
average velocity v⃗avg ≡ v (note that it is as well a vector quantity) is
defined as

v⃗avg =
∆⃗r
∆t

(1.7)

As any vector, it may represented by its vector components. The average velocity is not a function
of path connecting initial and final
positions.

The instantaneous velocity v⃗ is defined as the limit of the average
velocity at ∆t → 0, i.e.

v⃗ =
d⃗r
dt

(1.8)

Instantaneous velocity is always tangential to the path. This state-
ment can most simply be proven by considering motion along a
circular path. The radius vector of an object r⃗ = Rr̂. Hence,

v⃗ =
d⃗r
dt

= R
dr̂
dt

+ r̂
dR
dt

(1.9)

The last term on right hand side of Eq. 1.9 is zero because R is
constant. Let us now check the direction of dr̂/dt. For this, we find
the dot product r̂ · dr̂

dt :

d(r̂ · r̂)
dt

= 2r̂ · dr̂
dt

= 0 (1.10)

Indeed, because r̂ · r̂ = const the derivative is zero. Thus, Eq. 1.10

proves that dr̂/dt is perpendicular to r̂.

• E X P E R I M E N T:
Sharpening of a knife using rotating disk. All sparks are moving
tangential to the disk.

evaluation:
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1.3.2 Average and instantaneous accelerations

By definition the average acceleration is

a⃗avg =
∆v⃗
∆t

(1.11)

and its direction coincides with that of the average velocity as
shown in Fig. 1.10.

Figure 1.10: Average acceleration

Figure 1.11: Instantaneous acceleration

Let as consider the instantaneous acceleration, which is defined as

a⃗ =
dv⃗
dt

=
d2⃗r
dt2 (1.12)

Quite generally, a⃗ has both normal and tangential components to
the path. Indeed,

dv⃗
dt

=
d(vŝ)

dt
= v

dŝ
dt

+
dv
dt

ŝ (1.13)

In the spirit of Eq. 1.10 it is easy to see that dŝ/dt is normal to s
and may be denoted as n̂(⊥ ŝ). Hence, Eq. 1.13 may be rewritten as

a⃗ = at ŝ + ann̂, (1.14)

where at and an are the tangential and normal components of the
acceleration vector, respectively.

• E X A M P L E 1 . 3 . 1 :
By considering circular motion establish the meaning of an.

solution:
Let us for simplicity consider v being constant. The first term in
Eq. 1.13, vdŝ/dt may be found in the following way.
v⃗ = d⃗r/dt = Rdr̂/dt, ω = dφ/dt = v/R. Because v⃗ = vŝ, the
comparison yields dr̂/dt = ωŝ. Let us consider d(ŝ · r̂)/dt. It is zero
on the one hand. On the other hand it yields r̂dŝ/dt = −ŝdr̂/dt.
Hence, dŝ/dt = −ωr̂. Finally, an = −vω.

1.3.3 Equations of motion in vector form

We may consider as example two most important equations,

v⃗ = v⃗0 + a⃗t (1.15)

r⃗ = r⃗0 + v⃗t +
1
2

a⃗t2 (1.16)

These two equations can be rewritten in the component form.
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• E X P E R I M E N T:
To illustrate that the equations of motion for each component are
disentangled one may show the "schnips" experiment, where one
ball is given a horizontal impulse, while the second one starts
simultaneously free fall

evaluation:
Both balls reach the ground at the same time instance.

The best example for this independency is a projectile. For hori-
zontal motion one finds

x = x0 + v0xt = x0 + v0 cos(θ0)t (1.17)

For the vertical projection there are two equations

y = y0 + v0 sin(θ0)t − gt2/2vy = v0 sin(θ0)t − gt (1.18)

Figure 1.12: Projectile

We are interested to find the equation of path for the projectile, i.e.
a function y = y(x). Expressing t from Eq. 1.19, the required equation
results as

y − y0 = tan(θ0)(x − x0)−
g
2

(
g(x − x0)

v0 cos(θ0)

)2

(1.19)

With the equation of path one may find some quantities of inter-
ests as shown by the following examples.

• E X A M P L E 1 . 3 . 2 :
Find the height h at the highest point of the projectile.

solution:
To find h one needs to differentiate y with respect to x and equation
to zero. In this way one finds x = v2

0 sin(θ0) cos(θ0)/g as the
x-coordinate at the extremum. Substituting this to find y results in
h = (v0 sin(θ0))

2/2g

• E X A M P L E 1 . 3 . 3 :
Find the angle θ0 such that the longest distance is provided.

solution:
Because of the symmetry of the projectile and using the result of the
preceding example the distance is x = 2v2

0 sin(θ0) cos(θ0)/g. By
differentiating this equation with respect to θ0 one finds
cos2(θ0)− sin2(θ0) = 0. Hence at θ0 = 45◦ the distance will be
longest. The later is also graphically seen from Fig. 1.13.

Figure 1.13: Projectile
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• E X P E R I M E N T:
Shooting a monkey.

evaluation:
Monkey is hit

• E X P E R I M E N T:
Water stream.

evaluation:
Proving the longest distance at θ0 = 45◦.

1.3.4 Circular motion in component form

The radius vector of a particle moving along a circle with a constant
angular velocity ω = dϕ/dt in the polar coordinates system is

r⃗ = R cos(ωt)î + R sin(ωt) ĵ (1.20)

Taking time derivative the particle velocity results as

v⃗ = −Rω sin(ωt)î + Rω cos(ωt) ĵ = ω
(
−R sin(ωt)î + R cos(ωt) ĵ

)
(1.21)

If we introduce the unit tangential vector t̂, Eq.1.21 simplifies to

v⃗ = Rωt̂ (1.22)

Figure 1.14: Figure demonstrating that
the vectors given by Eqs. 1.20 and 1.21

are orthogonal.

By taking the time derivative of Eq.1.21, acceleration is obtained
as:

a⃗ = −ω2 (R cos(ωt)î + R sin(ωt) ĵ
)

(1.23)

It is readily seen that the angular acceleration is antiparallel with
the radius vector. By finding its magnitude and with the direction
established, the angular velocity for circular motion is

a⃗r = −ω2Rr̂ = −v2

R
r̂ (1.24)

If the angular velocity is not constant., i.e. ω = ω(t), one finds

a⃗ = a⃗r +
dv
dt

(
− sin(ωt)î + cos(ωt) ĵ

)
(1.25)

The second term on the RHS of Eq.1.25 is the tangential accelera-
tion

a⃗t =
dv
dt

t̂ (1.26)





2 The laws of motion

In the previous we have discussed laws of motion under given ini-
tial conditions, for fixed trajectories and/or given velocities and accel-
erations. In this chapter we attempt to answer what caused motion,
why under certain condition objects move along particular trajecto-
ries, or what we can learn about those objects if we may follow their
trajectories.

2.1 The Newton’s laws

In this lecture we recall three most important Newton’s laws
forming the basis for modern classical mechanics. The introduc-
tion of these laws was a conceptual advancement over the earlier
theories, such as by Aristotle. In the older theories, even thought
the forces were causing motions of objects, they were treated as the
necessary condition for any type of motion. Accordingly, if a force
stopped acting on an object, the object thought to come to rest. Any
instances when objects were moving without action of any forces, like
arrow leaving a bow, were discussed in an awkward and inconsistent
manner. The Newtonian mechanics treated the forces conceptually
differently, i.e. as causing the changes in motion.

Before introducing the Newtonian mechanics, it can be mentioned
that one may distinguish two type of macroscopic forces, contact
forces and field forces. Two push a car along a road one needs to
apply a contact force. On the other hand, a ball is "attracted" by the
Earth by applying a contact-less, distant force, the gravity force. To
date, all types of forces one may experience in the every-day life are
the results of just four fundamental forces: gravitational, electromag-
netic, strong and weak nuclear forces.

2.1.1 Newton’s first law

The Newton’s first law states that object will continue to be in rest or
will continue its motion with constant velocity unless it is acted by
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an unbalanced force. Therefore, sometime this law is also referred to Zero net force means that all force
components are equal to zero as well.as the law of inertia. A critical advancement over ancient theories is

considering the rest or motionless state to be qualitatively identical
with the states of movement with constant velocity. This makes all in-
ertial coordinate systems, i.e. that moving with respect to each other
with constant velocities, to be equivalent. If in one of them, all forces
acting on some object balance to zero, for the external observers in
other inertial reference systems the net force acting on the object as
well will appear to be zero.

• E X P E R I M E N T:
A ball rolling down an inclined surface continues to roll with a
constant velocity after leaving the inclined surface. It will, how-
ever, come to rest if enters a rubber sheet.

evaluation:
Along horizontal table the gravity force is zero. For a table covered
with some soft (rubber) film the frictional force changes the
otherwise constant velocity.

Figure 2.1: Two masses suspended with
threads

• E X P E R I M E N T:
The two masses are suspended with threads as shown in Fig-
ure 2.1. If to pull the lowest thread down as shown by the arrows,
which of the three threads will break down?

evaluation:
Depends on how quick to pull down. If slowly, then tension in the
uppermost thread will be highest (pulling force plus gravitational
force of the two masses) and it breaks down first. If quickly enough,
then the two masses having inertia will tend to keep their rest state
and, for this short interval of time, do not transmit tension to the
upper threads. Hence, tension quickly develops only in the lowest
threads and it breaks down.
The Newton’s firs law allows designing very simple devices for

measuring forces. For example, if you fix a spring at one end and
pull it from another end so that you extend the spring by some
amount ∆x, then you will feel that you need to apply some con-
stant force F to keep ∆x constant. Because the spring or you hand
do not move, the Newton’s law says that the force you apply needs
to be exactly compensated by another force. In this particular case,
this is the so-called spring force acting in opposite direction. Already
in 17th century id was established by the French philosopher Robert
Hooke that, at least for small extensions ∆x, the spring force Fs is a
liner function of ∆x:
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Fs = −k∆x (2.1)

where k is a spring constant. Thus, any spring can easily be cali-
brated and used to measure forces.

2.1.2 Newton’s second law

The Newton’s second law says that the rate of change of velocity of
an object, i.e. acceleration, is proportional to the net force acting on
the object and is inversely proportional to its mass. Because force
is a vector quantity, acceleration thus occurs in the direction of the
applied force. In fact, one may consider the second Newton’s law as
either definition of force or mass. Indeed, the force needed to accel-
erate 1 kg mass to 1 m/s2 can be defined as 1 Newton. Alternatively,
mass can be considered as measure of the resistance to acceleration
- the heavier is the mass, the larger is the force needed to apply to
accelerate an object to the same value.

2.1.3 Newton’s third law

The third Newton’s law states that all forces always appear in pairs.
If one object exerts a force F⃗ on another object, the latter will react
with the opposite force −F⃗ on the former one. A classical example of
this action-reaction pair is the gravity force. If the Earth attracts a ball
with a force Fg = −mg conventionally assumed to be downwards,
the same way the ball exerts equal in magnitude, but opposite force
Fg = mg to the Earth. Note, that the action and reaction forces are
always applied to different objects.

• E X E R C I S E 2.1. 1:
If both, the Earth and ball, attract each other with identical forces,
why do we say that the ball is falling down to the Earth and not
the Earth is falling dawn to the ball?

• E X E R C I S E 2.1. 2:
When tram stops, the passengers are typically fall backwards, not
forwards in accord with the law of inertia. Why?

2.1.4 Selected problems

A general scheme for solving mechanical problems on the basis of
three Newton’s equation comprises several steps:
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1. Isolating the object(s) of interest

2. Drawing of all forces acting on object

3. Selecting a suitable coordinate system

4. Writing down the second Newton’s law in component form

5. Solving the system of resulting equations

6. Checking yourselves (dimension, limiting cases, etc.)

Figure 2.2: An object sliding dawn a
frictionless surface

Let us consider a trivial example of an object sliding down a fric-
tionless surface as shown in Figure2.2 and apply the scheme outlined
above.

1. We are interested in behavior of the object on the surface.

2. There are only two forces acting, the gravity force down Fg and
the normal force Fn. Note that the normal force is perpendicular to
the surface. One need to introduce it to exclude movement of the
object in the direction perpendicular to the surface by compensat-
ing the respective gravity force component. Also, the normal force
cannot be selected to be in the direction opposite to the gravity
force. Otherwise, the object would not move at all.

3. Because we are interested in how the object will slide down the
surface, it is convenient to select the coordinate system with the
axes parallel and perpendicular to the surface.

4. In the perpendicular direction there is no motion. Hence,

Fn − mg cos(θ) = 0 (2.2)

In the parallel direction only the component of the gravity force is
responsible for acceleration:

mg sin(θ) = ma (2.3)

5. The system of resulting equations is too trivial and is already the
solution

6. For example, acceleration is found to be irrespective of mass. Does
it make sense? Yes, because we do not consider and friction or
drag forces. In this sense, it is reminiscent of the situation with
falling objects under gravity force under vacuum atmosphere.
Their acceleration is indeed irrespective of mass. As another limit-
ing case, if θ is equal to zero, no acceleration should result, which
is also correct.
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Another classical example is the so-called Attwood machine repre-
senting two masses connected with a thread over a pulley as shown
in Figure 2.3. Let us consider first how the masses will move. The
effect of the gravity force due to the two masses is to create a tension
T in the thread. Because this is physically one string and there is no
friction between the pulley and the thread, tension will be the same
over the entire thread. The Newton’s second law applied to the two
masses results, thus, in

T − m1g = m1a (2.4)

T − m2g = −m2a (2.5)

Figure 2.3: Attwood machine

Here we used the fact that tension is not zero, hence the masses
will move with identically, but in opposite directions. The system can
be solved either for tension or for acceleration as

a = g
m2 − m1

m2 + m1
(2.6)

T = g
2m1m2

m2 + m1
(2.7)

A simple check is making two masses identical, m. Then, zero
acceleration results as expected. Rationalizing T = mg and not,
for example, 2mg, is, perhaps, less intuitive. But the first Newton’s
law makes it clear. Indeed, if the two masses are identical, then they
do not move and the net force on them must be zero. As another
limiting case, let us consider one of the masses being zero. In this
case, acceleration is g and tension is zero, as expected.

• E X E R C I S E 2.1. 3:
When in Eq. 2.6 we set m2 = 0, then a = −g as expected. However,
for m1 = 0 it gives a = g, i.e., it predict the wrong direction. Does
it mean that Eq. 2.6 is not correct?

Figure 2.4: Two-pulley system

Yet another example might be very useful in every-day life and
is shown in Figure 2.4. The problem to solve is what is the minimal
force F one needs to apply to lift up the mass m? Once again one
may use the fact that tension in the thread is identical, so that T =

T1 = T2 = T3. If thread does not move, the force F just balances
tension T, F = T1 = T. To find T, let us consider the lower pulley
in rest. In this case, T2 + T3 = 2T = mg. Consequently, it turns that
F = mg/2. That means that if with one pulley one needs applying
the force F = mg, with the clever pulley system the force required is
only half of the weight to lift up.
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2.1.5 Frictional forces

If to push a heavy mass lying on a table parallel to the surface, quite
counterintuitively and in contrast to the first Newton’ law the mass
will not move.If you increase the force you are pushing with noth-
ing happens. If only some threshold level for the force applied is
reached, then the mass starts sliding. In fact, this observation does
not violate the Newton’s law, but rather corroborates it. Bringing
two bodies in contact (mass and table) results in the occurrence of
the frictional force between them. It turns out that the frictional force
opposes the external force applied and balances it, so that the body
remains in rest. Moreover, the magnitude of the frictional forces in-
creases linearly with the applied force until some maximal value is
reached. Only then the net force becomes non-zero and results in the
mass acceleration. The origin of the frictional force is predominantly
due to microscopic surface inhomogeneities. Figure 2.5 depicts the
simplest model for the emergence of friction by showing a mass m on
a surface. Both mass and surface have similar spike-like surface het-
erogeneities. Otherwise, there is no friction between the two bodies.
It is clear that, even with the frictionless surface, one needs to apply
non-zero force F = mg sin(θ) (consult the discussion of Figure 2.2)
in order the mass can slide over the surface spike if initially the two
spike were in contact.

Figure 2.5: Mechanical model for
friction

The model just discussed allows to rationalize that static frictional
force fs is proportional to the normal force Fn (as captured by mg in
Figure 2.5) and to surface properties of the two bodies in contact (as
modeled by sin(θ) in Figure 2.5). Hence, quite generally the static
frictional force is given by

fs ≤ µsFn (2.8)

Figure 2.6: Frictional force vs. applied
force

where µs is the coefficient of static friction. The latter is materials-
dependent and can be found in tabulated form for various materials.
With known Fn, µs is easy to measure by measuring the force needed
to bring the body in motion. It is quite counter-intuitive that fs is
not a function of contact area. Indeed, one may think that frictional
force is multiplicative of the contact points similar to that shown in
Figure 2.5. The latter should scale with surface area. This is, in fact,
true. However, the total normal force (e.g., the weight of the object)
will be distributed over all contact points. Thus, if there are N contact
points on the surface and at each contact point the normal force is
Fn/N, then fs results as fs ∝ N × (Fn/N) ∝ Fn.

If to bring the body into sliding motion, there is still friction be-
tween the bodies. However, it is found that the frictional force in this
case is lower as shown in Figure 2.6. Kinetic friction is captured by
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the same equations as the static one, Eq. 2.8, but with the coefficient
of kinetic friction µk < µs. This fact finds useful applications, such as
in anti-lock braking system (ABS).

2.1.6 Capstan equation

It has just been argued that the magnitude of frictional force does not
depend on the contact area between two bodies. This has also been
demonstrated in the lectures by turning a rectangular wood cuboid
on its different facets and measuring the frictional force. It turned out
that the latter was irrespective of on which facet the cuboid was lying
of. Quite puzzling appears, in this regard, the experiment in which a
thread, supporting a piece of mass at one of the ends, was wounded
around a fixed glass tube. The experiment has shown that the force,
needed to balance the weight, drops exponentially with the number
of wounds. Because the tube is fixed, obviously friction plays some
role. But why its effect depends on the contact area or length in this
case?

Figure 2.7: A capstan model

Figure 2.8: Force diagram for the model
in Figure 2.7

To clarify this, let us consider the model shown in Figure 2.7. Let
us fix the hold force, i.e. TH , and find the load force, i.e. TL, needed
to balance it. If there were no friction between the thread and rod, the
load TL and hold TH tensions in the thread would be identical and
equal to mg. The rod, thus, only changes the direction of the force,
but not its magnitude. With friction, however, for the mechanical
equilibrium one needs to include the frictional force acting in the
direction opposite to TL. Hence, quite generally, TH should be less
than TL. Because friction acts along the total contact line, tension
becomes progressively lower towards the hold side. Let us analyse it
by considering a small contact section as illustrated in Figure 2.8. It
shows a small circular arc of the angle dθ formed by the thread with
all forces acting on it. The mechanical balance equations, thus, are

(T + dT) cos(dθ/2) = T cos(dθ/2) + µsFn (2.9)

(2T + dT) sin(dθ/2) = Fn (2.10)

These to equations can be combined to yield

dT = µsTdθ (2.11)

To find the final solution, Eq. 2.13 can be integrated

∫ TL

TH

dT
T

= µs

∫ θ

0
dθ (2.12)

resulting the Capstan or Euler-Eytelwein equation
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TL = THeµsθ (2.13)

Finally, it is an interdependency between friction and tension that
leads to exponentially-fast decreasing tension in the thread with
increasing contact length.

2.1.7 Drag forces

The drag forces are similar to the frictional forces between solid bod-
ies. In this case, however, one of the bodies is replaced by a fluid,
either gas or liquid. On of the instructive examples convincing in
their occurrences is given by parachute, resulting in free fall with
constant speed under the action of the gravity force. Constant speed
assumes that the gravity force is balanced by one, called the drag
force.

Depending on the absolute velocity (more precisely, on the Reynolds
number), one may distinguish between two scenarios in which the
drag force Fd is proportional to either velocity or square of velocity.
The former regime is encountered for very low relative velocities and
is called viscous friction regime. This phenomenon will be consider
in details in one of the following sections on fluid mechanics. The
latter regime can easily be quantified by using a simple mechanistic
model.

Figure 2.9: Drag force at high speeds
Let us consider a body with the mass M and cross-sectional area A

moving with a high speed v in a medium containing small molecules
with a density ρ. Let us also assume that the molecular velocities are
notably lower than v, hence they will be compressed and collected
in the front of the body as illustrated in Figure 2.9. Let us for the
sake of simplicity consider free fall in the field of gravity. The second
Newton’s law in this case is

Mg = (M + m)a (2.14)

where m is the mass collected in the front of the body and a is
the acceleration of M + m resulting due to the gravity force Mg. Why the fluid molecules are not subject

to the free fall acceleration will be
discussed in thermodynamics course.

The mass collected by the body during short time interval dr can be
found as

dm = (A · vdt)ρ (2.15)

Let us find ma. For this one need to integrate

adm = (A · vdt)ρ
dv
dt

=
1
2

Aρdv2 (2.16)

resulting in
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Mg = Ma +
1
2

ACdρdv2 (2.17)

In the last equation we have introduced a phenomenological coeffi-
cient Cd accounting for the efficiency of collection of the molecules by
the body. The second term on the RHS of Eq. 2.17 can be considered
as the drag force Fg. Because its magnitude increases quadratically
with velocity, after certain period of time it balances the gravity force
and the body starts moving with a constant terminal velocity vt. It is
easily found as

vt =

√
2Mg
ACdρ

(2.18)

• E X E R C I S E 2.1. 4:
Estimate the typical terminal velocity for free fall with a parachute.

2.1.8 Inertial forces

When object performing rotational motion, e.g. a mass rotated us-
ing a thread, is considered in an inertial coordinate frame, then it is
subjected to centripetal acceleration a⃗ = −ω2⃗r. To give rise to this
acceleration, a centripetal force

F⃗cp = −mω2⃗r (2.19)

allowing to keep the object on the circular path must be applied.
In this particular case, tension in the thread plays such role. Some-
time, it becomes more convenient to work in the rotating coordinate
frame. This may, e.g., simplify equations or make analysis easier. For
example, in the rotating frame the object appears to be at rest and
acceleration disappears. At the same time, the centripetal force is
still there and in order to Newton’s second law to be valid a fictitious
centrifugal force F⃗c f ,

F⃗c f = mω2⃗r (2.20)

balancing F⃗cp, needs to be introduced. Once again, it does not exist
when viewed from the inertial coordinate frame and only appears in
the rotating frame.

Figure 2.10: Carousel with two masses

As an example, let us consider a carousel with two masses, m and
M, connected to the ropes of identical length L (see Figure 2.10). If
the carousel is rotated with the angular velocity ω would the angles
the masses decline from vertical be identical or different? To answer
this, it is enough to consider balance of all forces acting on the body
in the directional perpendicular to the rope:
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Fc f cos(θ) = Fg sin(θ) (2.21)

For the sake of simplicity, let us consider only small angles θ. In
this case, θ is readily found

θ =
ω2R

g − ω2L
(2.22)

to be mass-independent.

Figure 2.11: Rotating cuvette with
water.

Another example demonstrating the action of centrifugal forces is
shown in Figure 2.11. When the flat cuvette will be rotated, the water
interface will assume the shape shown by the black lines. To note is
that there is a common point for the interfaces obtained at different
rotation frequencies. Let us find now the shape of the water-air inter-
face using the force diagram in Figure 2.12. For a small volume with
mass m at the water surface to be in equilibrium Eq. 2.21 should be
valid. On the other side, the variation of the interface hight, dh, with
increasing distance from the rotation center, dr, is given by

dh
dr

= tan(θ) (2.23)

Combining Eqs. 2.21 and 2.23 readily yields

h =
1
2

ω2

g
r2 (2.24)

Figure 2.12: Forces on the water inter-
face in Figure 2.11.

• E X E R C I S E 2.1. 5:
Derive Eq. 2.24.

• E X E R C I S E 2.1. 6:
Find the position of the crossing or common interface point ob-
tained at different rotational frequencies in Figure 2.11.
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