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Expectation values of r for an arbitrary nl hydrogenic state are expressed in terms of state-
independent coefficients that are determined by a simple recursion relation. Explicit results are
given for negative P down to —16 and, by an algebraic transformation, for positive P up to 13.
Closed-form expressions are obtained for the coefficients of the two highest-order terms in I multi-

plying each power of n. The result is an asymptotic expression valid for each P and sufficiently large
I.

I. INTRODUCTION

The derivation of general expressions for expectation
values of r with respect to hydrogen-atom wave func-
tions has a long history, beginning with the early work of
Wailer, ' Van Vleck, and Pasternak. Here, P is a posi-
tive or negative integer and r is the radial coordinate.
Such general expressions are particularly important in
asymptotic expansions for the energy and other atomic
properties of Rydberg atoms consisting of an electron in
a high-nl quantum state moving in the field of a polariz-
able core. For example, the ionization energy of the Ryd-
berg electron is given by the well-known expansion

—hE =ai(r )+(a2 —6P&)(r )+ Ry,

where e, is the dipole polarizability, ez is the quadrupole
polarizability, P, is the leading nonadiabatic correction
etc. , and the expectation value is with respect to the Ryd-
berg electron.

The terms in Eq. (1) are currently known in their en-
tirety up to ( r ). Recent advances in experimental
precision for the Rydberg states of helium and the accu-
racy that can be achieved in variational calculations call
for an extension of Eq. (1) to higher inverse powers. The
most extensive tabulation of expectation values (r ) by
Bockasten gives general expressions as a function of n

and I up to P=8. However, his method, which involves
sums over triple products of binomial coefficients, is alge-
braically tedious and difficult to extend to higher powers.
The purpose of this paper is to derive a simple recursion
relation which allows one sequentially to obtain general
expressions for any (r ) with a minimum of effort. Ex-
plicit results are given for all cases up to P=16.

where N = [P/2] —1 and f„(1)= (1 + r)!/( I —r )! is a func-
tion only of I. The notation [ ] denotes "greatest integer
in." The functional dependence on n and I in Eq. (2) fol-
lows from a theorem stated by Pasternak. The quanti-
ties Fp, Gp(n, l), and C' ' are chosen for convenience to
be

(P —3)!
(P/2 1)!(P/2——2)!

(P —2)! (3)

z
for P odd,

[(P /2 —3/2)! ]

G ( I)
2 Z (2I P+2)!—

(4)
n +'(21+P —1)!

Ni2lv —
q 1 q N —1Cj"= g (2P —2. —5),

(P —2q —2)!q! s =q

with Ctv '=( —1) for all P. The above choices are sug-
gested by the known results up to P= 8. They yield a use-
ful partial factorization of the final coefficients.

The remaining coefficients d' „'are determined by use
of the Kramers-Pasternak recursion relation

Fp= '

„—P —2 4
(2l +P + 1)(21 P+1)—

2P 1
( p I )P

atomic units)

N q

(nti!r ~nl ) =FpGp(n, l) g Cq n q g dq„f„(l),
r=0

(2)

II. MATHEMATICAL DERIVATION P —1 ~( p)
n P

(6)

We begin by observing that a general nonrelativistic
expectation value ( r ) for a one-electron atom with
nuclear charge Z depends on n and I according to (in

I

Substituting Eqs. (2)—(5) into (6) and equating coe%cients
of equal powers of n and I yield the recursion relation

dq„+ '= ((P —2q)(2P —l)d' „''+2q(P—1)tdI '& „1+[r(r+1)—,'P(P —2)]d' ', „I')—1

P (2P —2q —1)

for q =0, 1, . . . , X and r =0, 1, . . . , q, starting with the values
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d(2) =1 d'3) =1
0,0 ~ 0,0

and coefficients with negative subscripts are taken to be zero. With these starting values, the recursion relation (7) has
the properties that

d'"=&
q, q

(8)

d' ' = — (P —2q —2)(P +2q —3)
q, q

—
1

(9)

for all P ~ 2 and q =0, 1, . . . , [P/2] —1. The derivation of Eq. (7) requires at an intermediate step the use of the identi-

ty

(I P/2—+1)(l +P/2)f„(1)=f„+,(I)+ [r (r +1)—,'P(P ——2)]f„(1). (10)

Since the coefficients given in Eqs. (8) and (9) multiply the highest powers of I for each n, they determine the high-I
(and therefore necessarily high n) dependence of the integrals for all P. The result is

(nl~r ~nl ) =FpGp(n, l) g C (P)n 'i [f (I)— (P 2q —2—)(P+2q —3)f i(1)],
q=0

with Fp, Gr(n, l), and C' ' as defined by Eqs. (3)—(5).
One could of course apply directly the recursion rela-

tion (6) to obtain sequentially the complete integrals for
particular values of n and l. However, the aim of the
core-polarization mode is to obtain (as far as possible) the
asymptotic potential in a state-independent form. From
this point of view, it is preferable to display and calculate
separately the contribution from each inverse power of r
In addition, the q=O and 1 terms of the asymptotic Eq.
(11) completely determine the coefficients of the leading
I /n and I /n terms in a 1/n expansion of the integrals.
This, together with Eq. (1), gives the corresponding 1/n
expansion of the polarization energies and associated
quantum defects for Rydberg states.

The connection between matrix elements of positive
and negative powers of r has been discussed by many au-
thors. ' ' For diagonal matrix elements, the result is

(nI!r ~nl)=
(21 P —1)!—2Z

2P+3

( nl
~
I /r +

~
n I ) .

(12)

Substituting Eq. (2) into the right-hand side of (12) gives

P —
1 N

( nI
~
r ~!nl ) =F g C' + 'nP+' PZP q=0

q

X g d"+"f (I)
r=O

(13)

with N=[(P+1)/2]. This is identical in form to Eq. (2)
except that the factor Gp+2(n, l) has been replaced by
n '/(2Z) . Equation (13) is valid for all I, even though
the right-hand side of (12) diverges for 1(X—1. The
asymptotic result corresponding to Eq. (11) is

P —1 N

(nl!r ~nI ) =Fp+& p g C~
+ 'n &+'[f (I)— (P 2q+1)(P+2q—)f i(I)] .

q=0
(14)

III. RESULTS

To save manual labor and ensure accuracy, it is now a straightforward matter to program the recursion relation (7)
and identify the numerical coemcients as rational fractions. There is never a problem of numerical cancellation because
the three terms on the right-hand side of (7) are always of the same sign (or sum to zero for the terms
dz „',r =0, 1, . . . , X —1 with P even). In addition, one knows that the product of the three coefficients Fp, C ', and
d' „'in (2) must always be an integer. With this in mind, the results are

(1/r ) =G2(n, l)/2,

(1/r ) =nG3(n, l),
(1/r ) = G(4n, 1)[3n f, (l)], —

( 1/r ) =6G&(n, l) Pn —n [fi(l) —
—,']],

(1/r6) =3G6(n, l)[ ,5n —10n [—fi(I)—
—,']+f2(l) j,

(1/r ) =30G7(n, l){", n ——',4n [fi(I) ——
—,']+n [f2(I)——', fi(l)+ —', ]),
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(1/rs) =10G8(n, l)[ 231n —63n [fl(l) —
—', ]+21n [f?(l)—3f, (1)+—", ]—f3(1)I,

(1/r ) =140G9(n, l)I 4,", n —",—n [fl(1)——', ]+9n [f?(l)—5f1(I)+—', ,'] n—[f3(I)—3f?(1)+—', fl(l) ——", ]I,
(1/r' ) =35G10(n, l)I ""n —'"'n [f1(I)——']+198n [f?(l)—"f—,(l)+ —"]

—36n [f3(l)——", f?(1)+=", ,
' f1(1)——",,' ]+f4(l) I,

(1/r" ) =63QG„(n,l) j
'4" n' —'"—n'[f, (l) ——"]+—"'n'[f, (l)—10f1(l)+—"']

"n 3—[f3 ( I ) —"f? ( —I) +48f 3
( I ) —""+ n [f4( I )

"f—3 (—I) +—'"f? ( I )
—7'f, ( I ) +64]I,

(, 1/r' ) =126G, (n l)[4'189n o 121ssn [f (I) —"]+1430n [f (I)—13f (I)+ ""]
1430 n 4[f ( I) 15f ( I )+ 177f ( I) 3124 ]

+55n [f4(I) —"f3(—l)+84f?(l) —""f?(l)+ ""']—f,(l)I,
(1/r' ) =2272G&&(n, l)I "", n "—""'n [f,(l) —9]+""n [f?(l)——", f, (l)+ —"']

—130n s[f3(l) —2Qf?(l)+ 887
f 1 (I)—'873 ]

+ "n [f (I)——18f (I)+174f (I) ""'f,—(1)+""']
n[f—8 ( I ) ——"f4( I ) +80f3 ( I )

—" f? ( I ) + 1600f, ( I )
—"' ]],

(1/r'4) =462G, 4(n, l) I
""'n '? —8398n '0[f, (l) ——"]+""'n [f?(1)—20f, (l)+ '"' ]
—4420n [f3 — f? +, f-1, ]

+975n 4[f (I) 76f3(l)+ ls41f (I) 3048f (I)+ 606164]

78n?[f (I) 33f (I)+ 680f (I) 12310f (I)+ 46732f (I) 329360 ]+f (l)I

(, 1/r' ) =12012G»(n, l)I '""'n' —"'"n "[f,(l) ——"]+1615n [f?(l)—24f, (l)+133]
—64 n 7[f (I)—63f (I)+ 3423f (I)—64421]

+255n [f4(l) —'~ f3(I)+497f?(l)—",'"f, (l)+ "'"]
—3Qn 3[f (I)—33f (I)+ 1372f (I) 13058f (I)+ 96888f (I) 1338036 ]

+n[f, (l) 12f,(1)+180—f,(l) —",'~f,(I)+14400f?(l)—3'8400 fl(l)+ ' 4' ]I,
(1/r ' ) =1716G,6(n, l) I

'"'"'n ' —"~"'n ' [f,(l) —15]+52003n '0[f?(I)—"f, (l)+185]—
—33915n [f3(I)—38f (I)+ '"'f (I)—12755/7]

+ 11 305n [f4( I ) 42f3 ( I ) + ","f—? ( I )
—"","f, ( I ) + 13 718]

17854[f (I) 1 I5f ( I) +791f ( I } 26864f ( I ) + 423 260f ( I) 2409320 ]

+ 105n [f6(l) —25f5(1)+ '"'f4(l) —6908f, (1)+ -'"'-""f? (I)

2372312f (I)+ 224972736 ] f (I) )

The above equations agree with those given by
Bockasten up to P=8. The presentation is slightly
different from the usual format in that the powers of n

are all even for P even and odd for P odd, with an extra
factor of 1/n being absorbed into Gp(n, l) for P odd.
This is done so that the recursion relation assumes the
same form for both P even and P odd. The results show
the usefulness of the factorization that has been achieved,
with the denominators being at most products of small
prime numbers.

The total coefficients of n 9 'f„(l) have been
checked by calculating directly the matrix elements of
1/r for a sufficiently large triangular array of n and l
values, and fitting the results of the functional form of
Eq. (2). The results agree to within the accuracy of the
numerical fitting (at least seven significant figures for P
up to 13).

The corresponding equation for (r ) can be read off
directly from the above (1/r + ) result, provided that
the G7, +3(n, I) factor is replaced by n '/(2Z) . For ex-
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ample, (1/r ) gives

(r ) =6(N/4Z )I ,'n —n—[f,(1)——,']) .

In summary, we have considerably extended the range
of powers for which the diagonal matrix elements of r
and 1/r are known as an explicit function of n and I,
and have given a recursion relation by which the range
can easily be extended further. The asymptotic expres-
sion (11) completely determines the coefficients of the
leading 1/n and 1/n terms in a 1/n expansion of the
integrals. It is hoped that the results presented here will

provide a useful tabulation in the study of Rydberg
atoms.
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