Advances in DNA nanotechnology (e.g. the origami method) allow to fabricate large 3D DNA objects with atomic precision in a „cooking pot“ reaction. Our interest is to make use of these methodologies to self-assemble „hard-matter“ materials into nanoelectronic devices in a highly paralelized manner. Hereby the DNA structure provides the template for material deposition. Aim of this project is to fabricate and characterize functional structures combining different materials.

Topic

 Advances in DNA nanotechnology (e.g. the origami method) allow to fabricate large 3D DNA objects with atomic precision in a „cooking pot“ reaction. Our interest is to make use of these methodologies to self-assemble „hard-matter“ materials into nanoelectronic devices in a highly paralelized manner. Hereby the DNA structure provides the template for material deposition. Aim of this project is to fabricate and characterize functional structures combining different materials.

Candidate

We are looking for a motivated student with interest in DNA nanotechnology and nanoelectronics/photronics. Previous laboratory experience is a plus but more important are motivation, analytical skills and strong commitment. The work can either be experimentally or theoretically oriented, depending also on the applicant’s skills and knowledge. A combination with a Bachelor or Master thesis is possible but not mandatory.

Contact

Prof. Ralf Seidel
Molecular Biophysics group
Peter Debye Institute for Soft Matter Physics
Universität Leipzig

ralf.seidel@physik.uni-leipzig.de
https://home.uni-leipzig.de/mbp/